
CSE 403
Requirements

“There are only two hard problems
in software engineering”

(tip of the day)

• Naming

• Cache invalidation/coherency

• Off-by-one errors

Class announcements

• Requirements due at 11:59PM on Monday

• Project managers must turn in weekly status
report by 11:59PM on Sunday

• Your team roles should be settling down

• Hacking, experimenting, prototyping as you
execute the formal assignments

• Next week: architecture, design, tools, process
docs due

Parallelizing/pipelining releases:
should you do it?

V1

•Release cycle is 3 weeks w/ ~2
weeks of development
•Overlap feedback/requirements
of next release with
implementation of previous
release
• 3 releases in 6 weeks

V2

V3

10/22

11/05

11/19

12/03

X

Parallelizing/pipelining releases:
should you do it?

V1

•Decomposing the cycle into
stages is key -- as for all pipelining
•Probably need to partition roles
between people doing
requirements and implementation
•Doing “double” the work
•Managing the overlap is critical --
how much, where
•What are the cross cycle
dependencies?

V2

V3

10/22

11/05

11/19

12/03

X

Requirements

What are you going to build?

•Tell “what” not “how”
•Provide vision to show “why”
•Describe “who”
•Explain business drivers

Example: A swing

Rope

Board

Build a swing
for a tree.

Interpretation

Writing requirements is like describing an
elephant

What is

?

Specificity and clarity
are keys

• Two ropes attached to a board

• What kind of board? What kind of rope?

• How long of a rope? How long of a board?

• What will this be used for? Who will use it?

• How much weight must it support?

• How will it get installed by the customer?

• What are the end deliverables?

Ambiguity is an enemy

•Must I carry a dog?
•What about the new shoes in my shopping bag?
•Do dogs have to wear shoes?
•What about an amputee? A single shoe? A double amputee?
•What are shoes?
•What are dogs?

Conclusion:

Specifying requirements is hard!

Why specify
requirements?

• Formulate, understand, and communicate
what is being built

• Set priorities on when things should be
developed and deployed

• Ensure that product is aligned with overall
company vision and goals

Outline

• What are requirements?

• How do we gather requirements?

• How do we specify requirements?

What are
requirements?

What are
requirements?

• Vision and background

• Users and use cases (role specifications)

• Functionality/Features (typically the most important)

• Scale issues

• Strategic planning

• Spans multiple { releases, months, years, projects }

• Road map (maybe with some date horizons)

• Platforms to support (sometimes)

General classes of
requirements

• Feature sets

• GUI

• Performance

• Reliability

• Expansibility

Good or bad
requirements? (why?)

• The system will enforce a 6.5% sales tax on Washington purchases

• The system shall display the elapsed time for the car to make one circuit
around the track within 5 seconds in hh:mm:ss format

• The product will never crash. It will also be secure against hacks

• The server backend will be written using PHP or Ruby on Rails

• The system will support a large number of connections at once, and each
user will not experience slowness or lag

• The user an choose a document type from the drop-down list

Who specifies the
requirements?

• Mostly the product manager (with input from lots of others)

• Engineering team (lead) -- usually functional requirements, and
refinements

• CEO (fly-by-requests -- be careful!)

• Typically it’s interaction between the product manager and the
engineering team -- that interaction is often confrontational and
painful!

• Skunk works or “bottom up” requirements (engineers)

How do we gather
requirements?

Many ways to get
requirements

• Intuition/Domain knowledge

• By committee

• CEO says!

• Iterative process between product management and engineering
(refinement)

• Customer input/feedback

• surveys, 1-1 interviews, focus groups, test/measure

• Usability studies

• Consultants!
Many

 tim
es

cus
tomers

 do
n’t

 kn
ow th

ey

want
 so

meth
ing

 th
at

do
esn

’t e
xis

t!

“We” might not know either

“There is no reason for a person to have
a computer in their home.”

-- Ken Olson, CEO and founder of Digital Equipment Corporation, 1977

Users and use cases

Users and use cases

• Actors -- users of the system

• Use cases -- examples on how the actor will use
the system (including involvement of other actors)

• Goal: Desired outcome of the actor in the use
case (success case)

• Detailed sequencing on typical/success case

• Some expression of exceptional conditions

Use case

• Example scenario on how the system is used by a
user

• Expression from a user’s point of view

• It implicitly shows features/functional requirements

• But can’t capture all features or exceptions

• Example: Jane has a meeting at 10AM; when Jim
tries to scedule another meeting for her at 10AM,
he is notified about the conflict

Qualities of a good use case

• Starts with a request from an actor

• Ends with the product of all the answers to the request

• Defines the interactions between the system actors related to the function

• View point is from the perspective of the actor

• Doesn’t describe the GUI in detail

• Has 3-9 steps in the main success scenario

• Is easy to read

• Summary fits on a page

Cockburn’s template
for use cases

Alistair Cockburn's suggested outline for functional requirements:

1.  purpose and scope
2.  terms / glossary
3.  use cases
4.  technology used
5.  other

a.  development process:
participants, values (fast, good, cheap?),
visibility, competition, dependencies

b.  business rules / constraints
c.  performance demands
d.  security (now a hot topic), documentation
e.  usability
f.  portability
g.  unresolved / deferred

6.  human issues: legal, political, organizational, training

•  Cockburn says the central artifact of requirements is the use case.

Is th
is useful?

Alistair Cockburn’s “Writing
Effective Use Cases”

http
://

alis
ta

ir.
co

ck
burn

.us/
Use

+ca
se

s

Practically speaking...

• Actors

• Preconditions

• Triggers (what starts the use case)

• Minimal/success guarantees (end condition)

• List of steps to a successful scenario

• Failure end conditions

• Extensions, alternative paths

Example

But
thi

s is
 pr

ett
y v

erb
ose

and
 tim

e

co
nsu

ming
...

Simplify....

•Enumerate actors
•Enumerate use cases for each actor

Pictures sometimes
help

���������������

����	�

��	��
�����

��������

��	������

Librarian!

Library Patron!

����	�������

Pictures for
complicated scenarios

��	��������
�
�����

Example

Actors and use cases

• Visitors: Find nonprofits, browse nonprofit data, leave comments, update
nonprofit data, make a donation

• Donors: Register/login, make donations, get receipts, see donations, crowd
source fund raising campaigns, broadcast activities onto social media
channels, leave comments, update nonprofit data

• Nonprofits: Claim/setup nonprofit listing page, login, update profiles, see
donors and donations, specify how they receive donations, write blog posts,
add photo stream, manage donor relationships

• Administrators (Charity Blossom employees): Manage listings,
send donations, interact with visitors and nonprofits (customer support),

Example use case: Jane makes a donation

• Actor: Jane, a visitor; Scenario: Visitor makes a donation;
Precondition: NA; Trigger: Jan wants to make a donation; Success
condition: Donation made; Failure condition: Donation not made

• Scenario

• Jane browses or searches for a nonprofit to make the donation

• She reviews information on the nonprofit as well as the terms of service at Charity Blossom

• She specifies the amount and payment method for the donation and commits to making the
donation

• She is presented with a receipt for the donation

• Exceptions: Jane can’t find the nonprofit, Jane is a registered user, Jane’s
credit card fails to get approved, nonprofit can’t take donations

Library example

Library example (continued)

Hints

• Detailed text descriptions work pretty well

• Hard to capture all the exceptions and paths even in this simple example

• Pictures can help

• Doesn’t capture all the feature/functional requirements even though the use
case provides insight

• Not enough time to write out all the use cases(?) -- marginal return on
time?

• Formal tools?

Feature/functional
specifications

Functionality/Features

• Usually bundled into the next release cycle

• Broken down into features

• Cognizant of time frame and resources

• Harder in the beginning? Because you are making
decisions that have long term implications

How to formulate
functional requirements

• Divide and conquer from vision

• Listen to feedback

• Brainstorm

• mutually exclusive, completely exhaustive
(?)

Examples

• Display listing information for every nonprofit (approximately 1.5MM)

• Periodically get (new) nonprofit listing information from irs.gov

• Allow visitors to leave reviews, update listing information

• Allow nonprofits to “claim” listing page by registering with CB.

• Allow nonprofit to update listing information

• Allow visitors to make a donation to help a specific nonprofit

• Require nonprofits to register/login when claiming listing

Drill down: Login and registration

• A nonprofit must be able to register
and login to use the system

