
CSE 403
Project Announcements

10/03/12

Announcements

• You teams should have selected a project manager by now;
inform instructor (and TAs)

• Your TA will coordinate a weekly meeting with your team/project
manager

• Project manager needs to turn in a weekly status report by
11:59PM on Sunday

• You should have a good idea how you are going to organize
yourselves

• Requirements due at 11:59PM on 10/8 (Monday)

“Divide and conquer” is your friend

• Your organization structure should help you divide up the
responsibilities

• Does everyone need to “deep dive” into the requirements?

• Same for architecture, runtimes and tools investigations,
data(base) design

• Understand the communication paths

• Playing, experimenting, prototyping is important at this stage

• Need to get started on requirements even though we haven’t
lectured on it yet

Project proposal grading

• What is the vision of your project?
(possible: 20)

• What problem are you trying to solve?
(10)

• What existing solutions don’t fully
address this problem? (5)

• What is the proposed architecture of
your product? (5)

• What is the proposed tool chain? (5)

• What is the minimum viable product
(full credit if a minimum viable product
is stated+stretch goals) (10)

• What are the risks? (5)

• What are you delivering in this project?
(5)

• Made presentation in 3 minutes (10)

• Moving forward to be a project (5)

• Total points cast for project/Total
points of highest project (20)

Stats

• High: 90

• Low: 60

• Mean: 82

• Median: 80

• Standard Deviation: 8.6

• 60, 70, 70, 75, 76, 78, 81, 82, 82, 85, 85, 88, 89, 89, 90

CSE 403
Software Lifecycle (continued)

Fall 2012

Lifecycle Tasks
Requirements

Design

Implementation

Test

Deployment

Support/Maintenance

Compatibility

Architecture

What

Big Picture

Details (but...)

Code

Make sure it works

What the customer sees

Keeping it working

Old versions work with new

Waterfall Model

Requirements

Design

Implementation

Test

Deployment

Architecture

•assumes requirements will be clear and well-understood
•requires a lot of planning up front (not always easy)
•rigid, linear; not adaptable to change in the product
•costly to "swim upstream" back to a previous phase
•hard to “pipeline”
•nothing to show until almost done ("we're 90% done, I swear!")
•out of vogue, in 2012

Staged delivery model

•  Waterfall-like beginnings
•  Then, short release cycles: plan, design, execute, test, release,

with delivery possible at the end of any cycle

Ad hoc development

Great for early stage
development for a
small team.
•Get early feedback quickly
•Efficiently deploy a lot
•Low overhead

...but not without
down sides
•Are you building the right thing?
•Will it scale (across multiple dimensions)?
•Susceptible to disasters
•Progress grinds to a halt...
•Not “engineering?”

Evolutionary prototyping model

•  Develop a
skeleton system
and evolve it for
delivery

•  Staged delivery:
requirements are
known ahead of
time

•  Evolutionary:
discovered by
customer feedback
on each release

Agile Development

agile software development: An adaptive,
iterative process where teams self-organize and
build features dynamically.

•Extreme Programming
•Scrum
values:
•Individuals and interactions over processes

and tools
•Working software over documentation
•Customer collaboration over contract

negotiation
•Responding to change over following a plan

Agile (a practical view point)

• Release cycles are typically shorter

• Small features with small requirements

• Decoupled features

• “Bottom up” (maybe)

• Better regression/unit tests (more on this later)

• Frequent but short meetings

• More “developer friendly” and in vogue

• Faster feedback

“Evolutionary” delivery

???

Similar to staged delivery but requirements,
design (and architecture) pushed downstream

When do you release software?

• Feature-based processes

• Train-based processes

• Continuous processes

“Feature Based” Processes

• Decide what you want to release

• Figure out how long it takes

• Determine a release date

• Release “cycles” have variable length

• Execute

• Process is brittle because of errors in estimation of how long it
takes

• (False) belief that you can “slip in” one more feature, pull in the date
by cutting a feature, add a feature by just adding a little more time

 “Train-based” processes

• Release software on a fixed schedule (monthly, quarterly, yearly)

• Load or unload features onto the train when they are ready

• Predictability of “when” -- less predictability of “what”

• Harder to be agile?

• Makes engineers lazy?

• Analogy: Trains comes by every day on schedule; could be crowded, could
be empty

Continuous Release Processes

• Can release a new feature at any time

• Seems flexible and efficient, possibly ad hoc

• But all steps are executed (or worse, ignored)

• Queue of (small) features

• Delivering big features harder? (Stateful/db changes trickier)

• How do you regression test?

• Developer friendly(?)

• Works for small teams, new products, with evidence that it scales to big
companies too

Feature v. Train v. Continuous

1Q13 2Q13 3Q13 1Q14 2Q14 3Q14 4Q14

1Q13 2Q13 3Q13 1Q14 2Q14 3Q14 4Q14

Feature

Train

1Q13 2Q13 3Q13 1Q14 2Q14 3Q14 4Q14

Continuous

Summary: Lifecycles vs. release
cycles

Lifecycle Methodologies
•Waterfall
•Staged delivery
•Evolutionary prototyping
•“Evolutionary” delivery
•Ad hoc

Release Cycles
•Feature based
•Train-based
•Continuous

CSE 403 Projects

Global Requirements

Proposals

Architecture Tools/Infrastructure

Requirements Design

ImplementTestDeploy

Feedback

10/8

9/28

11/5, 11/19, 12/3

10/15 10/15

“Prototype”

10/22Experiment, Play, Hack

What happens in the
two week cycle?

Requirements Design

ImplementTestDeploy

Feedback

•Review feedback (Day 1)
•Finalize/Review Requirements (Day 1-2)
•Decompose features, Design, Implement, Unit Test (Day 3-10)
•Feature complete/Code Free (Day 11)
•Fix bugs (Day 12-13)
•Deploy (Day 14)

What could go wrong?

• Underestimated time to implement a feature

• Underlying infrastructure not stable

• Deployment environment not ready

• Where’s the data?/Where are the users?

• Not enough time to write/review requirements

• Code doesn’t work

• No time to review what went wrong, so next cycle is jeopardized

Remedies

• Drop features (until the next release or
forever?)

• Scale way back on the next release to get
infrastructure worked out

• “Pipeline” overlapping releases

• Wrong process to begin with?

Serialized releases (non-overlapping)

V1

V2V2

V3

11/05

11/19

12/03

Feedback, Requirements, Design,
Implementation, Test, Deploy

Feedback, Requirements, Design,
Implementation, Test, Deploy

Feedback, Requirements, Design,
Implementation, Test, Deploy

Pipelining releases

V3

V1

•Release cycle is 3 weeks w/ ~2
weeks of development
•Overlap feedback/requirements
of next release with
implementation of previous
release
• 3 releases in 6 weeks

V2

V3

10/22

11/05

11/19

12/03

X

Obviously more complicated

• Parallelism through pipelining

• Working on two releases at once

• But carefully structured it so that only implementing one release at a time

• Divide and conquer necessary: requirements separated from
implementation

• Aside: What happens if you have a big feature that takes longer than 1 cycle
to implement?

Where else have we seen pipelining/
divide and conquer in computer science?

• Basic computer architecture

• fetch, decode, load, execute, and store cycle

• Instruction execution broken down into
pieces

• Can we pipeline and execute in parallel?

• Are there cross cycle dependencies?

Related example: A monthly
release cycle

Take aways

• Many different kinds of software life cycles

• “Agile” with short release cycles are in vogue (at least in
consumer web dev)

• Process is a necessary overhead so you can move
forward as you grow

• Recommend your projects take an agile approach, with
short release cycles -- hybrid feature/train releases
(continuous if you are brave)

• Pipelining -- will it be necessary?

Warning: We’ve arbitrarily added more
process in CSE 403

Sep 24 Dec 3

