CSE 403

Software Lifecycle
Fall 2012

September 26,2012

Showing Up

(Tip of the Day)

® “Eighty percent of success is showing up”

® Show up for work every day/class unless you have
a good excuse (or make one up :-)) -- sick,
appointment, vacation

® | et your boss know

® www.cs.washington.edu/403->I'm skipping class

Software Lifecycle

A “software lifecycle” is the process by which an
organization delivers software.

There are many kinds

of lifecycles

® Software engineering is more than a “mere
matter of programming”

® Type of software
® Size/complexity of software
® Maturity of company/software

® |ack of planning (process has a “life of its
own”

Software size/complexity

® Big/many requirements -- “Boiling the ocean?”

® Unclear requirements/unchartered territory --
“You don’t know what you are doing”

® |ots of features
® Many people
® External issues

® Lines of code, number of classes

Amount of process

New Mature
[terative
Young Old
lll-defined Well-defined
Hackers MBA’s
Neophyte Early stage Experienced Mission Critical
Simple Complex
Consumer Enterprise
Small Large

———————————

Less More

Not enough attention to process(?)

100% [

Percent
of Effort

Productive Work

0% L— oo
Beginning
of Project Project
Time

Early attention to process (and tools)

100% § AN]
; Thrashing
P |
OgrchefI(\)trt : Productive Work
t
Process:
OU“ \ -
Beginning End of |
of Project Project |

Time |

Lifecycle Tasks

Requirements

Architecture

Design

Implementation

Test

Deployment

Support/Maintenance

C N¢C NXC NXC NC NC \NC NN)

Compatibility

U

What

Big Picture
Details (but...)
Code
Make sure it works
What the customer sees

Keeping it working

Old versions work with new

Waterfall Model

[Requirements]—l

T—[Architecture)—l
T—[Design]—l
T—(Implementation)—l

eassumes requirements will be clear and well-understood T—(Test
erequires a lot of planning up front (not always easy)

erigid, linear; not adaptable to change in the product T_[Depl
ecostly to "swim upstream" back to a previous phase

ehard to “pipeline”

enothing to show until almost done ("we're 90% done, I swear!")
eout of vogue, in 2012

Staged delivery mo

Software
Concept |
/
Requirements
Analvsis

Architectural
Design

A

J

7

!

L—{Smge 1: Detailed design. code, debug, test. and deli\fer}D
7

[Smge 2: Detailed design. code. debug, test. and deiivera
Y
B ¥
LSIage n: Detailed design. code. debug, test. and deli\-er)]

« Waterfall-like beginnings

* Then, short release cycles: plan, design, execute, test, release,
with delivery possible at the end of any cycle

Ad hoc development

Svstem
Specification
{mavbe)

Great for early stage
development for a

small team.

*Get early feedback quickly
*Efficiently deploy a lot
*Low overhead

Release
{maybe}

...but not without

down sides

*Are you building the right thing?

*Will it scale (across multiple dimensions)?
*Susceptible to disasters

*Progress grinds to a halt...

*Not “engineering?”

Evolutionary prototyping model

Develop a
skeleton system
and evolve it for
delivery

Staged delivery:
requirements are
known ahead of
time

Evolutionary:
discovered by
customer feedback
on each release

N A Y
Initial Design and Refine prototype Compilete
concept implement until acceptable and release
initial PIototype
prototype
— e
&

Agile Development

agile software development: An adaptive,

iterative process where teams self-organize and

build features dynamically.
*Extreme Programming
eScrum

values:

*Individuals and interactions over processes

and tools
*Working software over documentation
*Customer collaboration over contract
negotiation

*Responding to change over following a plan

adaptability
transparency
Agility is... simplicity
charter funding
STRATEGY
estimation unity
—_— RELEASE

e;se, "VITERATION 'cirospective

CONTINUOUS
TDD build

refactoring integration
burndown

collaboration y

Working
7 Software

velocity

burnup

tests

