
CSE 403

September 26, 2012

Software Lifecycle
Fall 2012

Showing Up
(Tip of the Day)

• “Eighty percent of success is showing up”

• Show up for work every day/class unless you have
a good excuse (or make one up :-)) -- sick,
appointment, vacation

• Let your boss know

• www.cs.washington.edu/403->I’m skipping class

Software Lifecycle

A “software lifecycle” is the process by which an
organization delivers software.

There are many kinds
of lifecycles

• Software engineering is more than a “mere
matter of programming”

• Type of software

• Size/complexity of software

• Maturity of company/software

• Lack of planning (process has a “life of its
own”)

Software size/complexity

• Big/many requirements -- “Boiling the ocean?”

• Unclear requirements/unchartered territory --
“You don’t know what you are doing”

• Lots of features

• Many people

• External issues

• Lines of code, number of classes

Amount of process

Less More

Small Large

Simple Complex

EnterpriseConsumer

Mission CriticalEarly stage

Hackers MBA’s

MatureNew

OldYoung

ExperiencedNeophyte

Ill-defined Well-defined

Iterative

Not enough attention to process(?)

Early attention to process (and tools)

Lifecycle Tasks
Requirements

Design

Implementation

Test

Deployment

Support/Maintenance

Compatibility

Architecture

What

Big Picture

Details (but...)

Code

Make sure it works

What the customer sees

Keeping it working

Old versions work with new

Waterfall Model

Requirements

Design

Implementation

Test

Deployment

Architecture

•assumes requirements will be clear and well-understood
•requires a lot of planning up front (not always easy)
•rigid, linear; not adaptable to change in the product
•costly to "swim upstream" back to a previous phase
•hard to “pipeline”
•nothing to show until almost done ("we're 90% done, I swear!")
•out of vogue, in 2012

Staged delivery model

•  Waterfall-like beginnings
•  Then, short release cycles: plan, design, execute, test, release,

with delivery possible at the end of any cycle

Ad hoc development

Great for early stage
development for a
small team.
•Get early feedback quickly
•Efficiently deploy a lot
•Low overhead

...but not without
down sides
•Are you building the right thing?
•Will it scale (across multiple dimensions)?
•Susceptible to disasters
•Progress grinds to a halt...
•Not “engineering?”

Evolutionary prototyping model

•  Develop a
skeleton system
and evolve it for
delivery

•  Staged delivery:
requirements are
known ahead of
time

•  Evolutionary:
discovered by
customer feedback
on each release

Agile Development

agile software development: An adaptive,
iterative process where teams self-organize and
build features dynamically.

•Extreme Programming
•Scrum
values:
•Individuals and interactions over processes

and tools
•Working software over documentation
•Customer collaboration over contract

negotiation
•Responding to change over following a plan

