
QUIZ SECTION

EXERCISES

Quiz Section Exercises FAQ

• What is the point of these assignments?

• Removing some of the nice/safe assumptions that you get to make

with your projects

• Introducing contradictory/impossible requirements

• Forcing design decisions around complications

• Showing how early design choices impact later development

FAQ, cont’d

• Why did I lose points for:

• An algorithm choice

• Does it run in the required Big O time? In the worst case?

• If not, did you justify your choice?

• A design choice

• Is there any organization or structure?

• Will it make future changes harder? Is it brittle?

• A documentation choice

• Did you make any statements that were factually inaccurate? Eg, put

the wrong runtime for an algorithm

• Did you make a nonstandard choice without justification or explanation?

• Did you contradict an assignment requirement and not explain it? Eg,

Big O of space not runtime

FAQ, cont’d

• What do I need to document?

• Nonstandard practices

• Nonintuitive behavior

• Assumptions

• Nonobvious boundary cases or breaking behavior

• Decisions that go against assignment requirements/guidelines

• How much do I need to write?

• As much as it takes to document your choices.

• Does not have to be long! Just has to be complete.

URL Validation

• Design is due Nov 14

• The only code change for this assignment is adding an argument to

the command line or interface that specifies a sort of: valid URLs,

invalid URLs, or all URLs.

• Code is due Nov 21

URL Validation

• What is the right approach to this?

• Think about time constraints

• Consider what your common cases are

• Remember you’re free to make assumptions as long as you define

what they are. You should also be able to justify them.

• A simple approach is fine.

• http://en.wikipedia.org/wiki/URL_normalization

• The normalizations that preserve semantics are easy. These are a

good place to start.

• Probably at least 2-4 of the normalizations that may not preserve

semantics would make this much more useful.

• Look what regex exist for validation and build from there.

http://en.wikipedia.org/wiki/URL_normalization

URL Validation, design

• Code needs to include:

• Validator

• Normalizer

• Comparators

• URL object would let you override comparators. This is

good for sort and might be convenient.

• You can leverage parts of this to simplify others.

Comparison is easier (and works better) on normalized

URLs. It might also simplify validation.

