
Unit Testing in Windows

Mark Schofield 2/16/2011

Preamble

 “Unit Testing in Windows”
 Training provided to Windows Engineers after Windows 7

had shipped

 A few customizations…
 „Internal‟ items removed (sorry!)

 Demo‟s still exist

 Questions are OK
 Let‟s chat about stuff; I‟ll keep us on track

2/16/2011 PAGE 2

Who Am I?

 Mark Schofield
 Lead Software Development Engineer

 12+ years at Microsoft

 8 years as a “Software Design Engineer in Test”

 4+ years owning „Test Authoring‟ in Windows

 Member of the „Engineer Desktop‟ team

 Part of the „Engineering System‟

2/16/2011 PAGE 3

Agenda

 Setting the Stage
 Challenges/Opportunities

 Introducing Unit Testing
 What is a Unit Test

 Benefits

 Write some Unit Tests
 Prep

 TAEF – The “Test Authoring and Execution Framework”

 Creating your Unit Test binary

 Unit Testing Topics
 Mitigating Dependencies

2/16/2011 PAGE 4

Setting the Stage

 Scale
 „Windows‟ is big

 10‟s of thousands of Engineers

 100‟s of millions of lines of code

 Source control, branching and versioning means there‟s many
„views‟ of the 100‟s of millions of lines of code

 Diversity
 Multiple Languages

 C, C++, C++/CLI, C#, Assembly Language

 JScript, Perl, PowerShell

2/16/2011 PAGE 5

Challenges/Opportunities

 Finding bugs sooner saves money/time

2/16/2011 PAGE 6

Cost to fix a bug

Introduction to Unit Testing

 “Unit Testing is a relatively inexpensive, easy way to
produce better code faster.”

 Pragmatic Unit Testing, Andy Hunt and Dave Thomas

 Industry practice
 There‟s a lot of precedent out there

 Developer Activity
 Unit Tests shouldn‟t be „handed-off‟ to the Test team

 2/16/2011 PAGE 7

What is a Unit Test?

 "A unit test is a piece of a code (usually a method) that
invokes another piece of code and checks the
correctness of some assumptions afterward. If the
assumptions turn out to be wrong, the unit test has
failed. A "unit" is a method or function.“
 - Roy Osherove

 Osherove, R. (n.d.). The Art of Unit Testing: with
Examples in .NET.

 2/16/2011 PAGE 8

So, what is a Unit Test?

 Usually a Unit Test exercises some particular method
or class in a particular context;
 Adding a large value to a sorted list; make sure that it‟s added

to the end

 When manipulating state under certain context, that the
correct manipulation happens

 A good starting Unit Test would be to construct a
given class, and verify its initial state
 That‟s the level that we‟re working at

2/16/2011 PAGE 9

Getting everyone on the same page

 If a test requires…

 …any more than guest privileges…

 …read/write access to the host operating system‟s files…

 …the use of an “install” or “update”…

 …a “test” operating system to be installed…

 …crossing process boundaries (including driving UI)…

…it‟s not a Unit Test.

 A Unit Test should run in milliseconds, not seconds.

2/16/2011 PAGE 10

Why be so strict?

 This definition of Unit Tests is what makes them so
valuable

 Fast, portable, reliable because they‟re tightly
scoped and have no dependencies

 High „bang-for-buck‟ – Developers are working at
a level that can leverage their domain expertise

 Forces good separation, cohesion of code

2/16/2011 PAGE 11

Benefits of Unit Testing

 “Unit Testing will make your life easier. It will make
your designs better and drastically reduce the
amount of time you spend debugging.”
 – Pragmatic Unit Testing

 You will know sooner and with greater confidence
that your code is doing what you intended

 If (or when?) requirements change, you can be more
agile in responding to them

2/16/2011 PAGE 12

Unit Testing isn’t (initially) easy

 Unit Testing may require refactoring of code
 The code will be better encapsulated and cohesive as a result

 Writing Unit Tests will encourage Developers to write better
code

 Unit Testing is as much about the journey as it is the
destination.

 Assigning a single Developer to write a whole team's
unit tests is not the right approach

 Unit Testing will take 30% of your development time.

2/16/2011 PAGE 13

Let’s get started!
2/16/2011 PAGE 14

by auspices

Preparation is important
2/16/2011 PAGE 15

by Nathaniel Robertson

Cleaning your code

 Declarations go into header files, implementation
goes into C/CPP files
 If you can‟t #include it, you can‟t Unit Test it.

 Increases reusability, too.

 Make header files self-sufficient
 You‟ll be compiling it from your product code, and your Unit

Test code.

 Minimize compile-time dependencies
 Only #include what you need in the header

 Forward declarations are OK

2/16/2011 PAGE 16

An example CPP file

2/16/2011 PAGE 17

Refactoring your code

 Many of the Design Pattern „best practices‟ make
code more Unit Testable
 Prefer minimal classes to monolithic classes

 Prefer composition to inheritance

 Avoid inheriting from classes that were not designed to be
base classes

 Prefer providing abstract interfaces

 Don‟t give away your internals

 Unit Testing is „encouraging‟ better design.

 Herb Sutter‟s “C++ Coding Standards” is a great
reference here.

2/16/2011 PAGE 18

An example of refactoring

2/16/2011 PAGE 19

We’ll need some tools…
2/16/2011 PAGE 20

by brandi666

Introduction to TAEF

 Test framework used by Windows Developers and
Testers - and other teams across Microsoft
 Will be shipping in an upcoming Windows Driver Kit

 Foundation for the automation stack; Unit 
UI/Scenario
 Focusing on Developer and Tester scenarios

 Evolution of existing tools along with industry
practices
 CppUnit, nUnit, JUnit, xUnit, etc…

 Provides a platform to support different testing
methodologies; static, data-driven, etc.

2/16/2011 PAGE 21

TAEF Features

 No managed or native affinity
 Teams can use most productive authoring language

 C/C++, C#, JScript, VBScript

 Minimal dependencies and pay-for-play features

 „Out-of-process‟ execution by default
 Each „Test DLL‟ gets it‟s own „sandbox‟ process.

 Also supports „cross-machine‟ execution.

 Metadata support for selection and runtime
environment configuration

 Integration with internal tools

2/16/2011 PAGE 22

Demonstration

Creating your Unit Test binary

 Source code location
 In the same project as the product code

 Under a “UnitTests” folder, following the product code
structure:

2/16/2011 PAGE 24

Feature1

Feature1Binary1 makes: f1.exe

Feature1Binary2 makes f2.dll

UnitTests

Feature1Binary1 makes f1.unittests.dll

Feature1Binary2 makes f2.unittests.dll

Creating your Unit Test binary

 DLL Naming
 “<product binary>.unittests.dll”

 For example, “notepad.exe” should have Unit Tests in “notepad.unittests.dll”

2/16/2011 PAGE 25

‘MARKING-UP’ THE UNIT TEST

Authoring a C/C++ Test

#include "WexTestClass.h"

class ManagerTests : public WEX::TestClass<ManagerTests>

{

public:

 TEST_CLASS(ManagerTests)

 TEST_METHOD(ConstructionTests)

 {

 // ...

 }

};

2/16/2011 PAGE 26

Compiling your Unit Test binary

 Native C++ Unit Tests should link directly to the „obj‟
files that are produced from the product code.
 This allows the Unit Tests to interact directly with the product

code at the class or function level, without - for example -
having to "DLL export" code for it to be visible.

2/16/2011 PAGE 27

Compiling your Unit Test binary (2)

 DLL exporting the code in order to unit test is not
good;
 It increases the size of the export table of the Product Code

binary

 For classes, exporting the classes restricts the implementation
of the class.

 It increases the surface area of internal APIs

 Don‟t create a „lib‟ of the dll‟s product code just for
Unit Testing
 It‟s an extra build step that‟s unnecessary

2/16/2011 PAGE 28

Writing Unit Tests

 Start simple
 The first test that you write should be incredibly simple, to

make sure that you can create, compile and run it.

 The general pattern for the Unit Test code:
 Set-up all conditions needed for testing

 Call the method to be tested

 Verify that the tested method functioned as expected

 Cleanup anything it needs to

2/16/2011 PAGE 29

Writing Unit Tests

 The „VERIFY‟ macros helps verify the state that you
expect
 Effortless verification/logging APIs; encourages a consistent

logging pattern

 Logs concise message if verification succeeds; more detailed
(type-aware) message if verification fails.

 Streamlines test code by removing the need to nest
verification calls (if compiled with C++ exceptions enabled).

 You‟ll get concise output on success, detailed output
on failure

2/16/2011 PAGE 30

‘Verify’ examples

 Write:
VERIFY_ARE_EQUAL(myExpectedValue, MyFirstTestFunction());

VERIFY_SUCCEEDED(MySecondTestFunction());

 As opposed to:
 int result = MyFirstTestFunction();

 if (result == myExpectedValue)

 {

 Log::Comment("MyFirstTestFunction() succeeded");

 HRESULT hr = MySecondTestFunction();

 if (SUCCEEDED(hr))

 Log::Comment("MySecondTestFunction() succeeded");

 else

 Log::Error("MySecondTestFunction() did not return the expected result");

 }

 else

 Log::Error("MyFirstTestFunction() did not return the expected result");

2/16/2011 PAGE 31

Writing Unit Tests

 Unit Tests should be very linear
 Little – if any – control flow

 If there‟s control flow; should it be a different test?

 Code for the success case
 Production code needs to accommodate all scenarios,

failures, error cases, edge cases, etc, unit test code doesn‟t

 Unit Tests should be quick to write
 Test Harness should support this, by having a low „per test‟

overhead

2/16/2011 PAGE 32

Demonstration

Running Unit Tests

 Using TAEF:
te UIAnimation.unittests.dll

 Select the right tests to get quick verification:
te UIAnimation.unittests.dll /select:@Name='ManagerTests::*'

te UIAnimation.unittests.dll /name:ManagerTests::*

 The selection language allows you to select through
metadata, using „and‟, „or‟ and „not‟ semantics.

2/16/2011 PAGE 34

Demonstration

Setup and Cleanup

 Like most Unit Test harnesses, TAEF supports Setup
and Cleanup „fixtures‟ to allow shared code to
„bookend‟ tests

 You can write fixtures around Tests, a Class or a DLL

 TAEF guarantees that the fixtures are prepared before
the test is run
 All fixtures run on the same thread as the test itself.

2/16/2011 PAGE 36

Setup and Cleanup

2/16/2011 PAGE 37

Adding metadata

 Metadata is simple data associated with the test code.

 Metadata can be applied to DLL‟s, Classes or Tests

 Metadata is „inherited‟

 Metadata is used for:
 Selection

 Runtime environment configuration

2/16/2011 PAGE 38

Adding metadata (2)

 „Marking-up‟ the Unit Test:
#include <WexTestClass.h>

class VariableTests : public WEX::TestClass<VariableTests>

{

public:

 BEGIN_TEST_CLASS(VariableTests)

 TEST_CLASS_PROPERTY(L"Owner", L"MSchofie")

 END_TEST_CLASS()

 TEST_METHOD(ConstructionTests);

 TEST_METHOD(ValueChangeTests);

};

2/16/2011 PAGE 39

Demonstration

Mitigating dependencies

 The most difficult aspect of Unit Testing is „mitigating
dependencies‟

 Unit Tests need to execute the „unit‟ in isolation
 Dependent methods or objects should be replaced

(somehow) with a „test double‟.

 Test Double: A test specific equivalent of product code.

 There‟s different ways to solve this
 Techniques differ based on the language, level, practicality,

cost

2/16/2011 PAGE 41

THE GAMUT OF TECHNIQUES

Mitigating dependencies

 Design-time
 Use Design Patterns to allow the introduction of a Test

Double at Unit Test-time

 Compile-time
 Compile different implementations into the product code,

when compiling the code into your Unit Tests

 Link-time
 Link to test doubles functions, control behavior at runtime

 Run-time
 Change/replace the implementation at runtime

2/16/2011 PAGE 42

Design-time Mitigation

 Use of design patterns decouples implementation
through interfaces
 “Program to an Interface, not an Implementation”

 Interfaces provide a great opportunity for
introducing test doubles

 Unit test can declare a function scoped class that
implements the specific interface

2/16/2011 PAGE 43

Design-time Mitigation

class ComplexSystem

{

public:

 ComplexSystem(IDependency& dependency, int parameter) :

 m_dependency(dependency)
 {

 m_dependency.Initialize(parameter);

 // ...

 }

private:

 IDependency& m_dependency;

};

2/16/2011 PAGE 44

Compile-time Mitigation

 Often „cheaper‟ than design-time mitigation
 Less work

 More performant than „design-time‟ mitigations

 Compile-time polymorphism, not runtime polymorphism

 Uses C++ techniques
 Not suitable for C

 May require moving code into headers

2/16/2011 PAGE 45

EXAMPLE – DEPENDENT CLASS

Compile-time Mitigation

class ComplexSystem

{

public:

 ComplexSystem(int parameter) : d(parameter)
 {

 // ...

 }

private:

 DependentClass d;

};

2/16/2011 PAGE 46

EXAMPLE – DEPENDENT CLASS

Compile-time Mitigation (2)

template <typename TDependentClass = DependentClass>

class ComplexSystemT

{

public:

 ComplexSystemT(int parameter) : d(parameter)
 {

 // ...

 }

private:

 TDependentClass d;

};

typedef ComplexSystemT<> ComplexSystem;

2/16/2011 PAGE 47

EXAMPLE – DEPENDENT CLASS

Compile-time Mitigation (3)

 Within the test, provide a function scoped double,
and provide that to the template class

TEST_METHOD(ComplexSystemTest)

{

 class DoubleDependentClass

 {

 // ...

 };

 ComplexSystemT<DoubleDependentClass> system;

}

2/16/2011 PAGE 48

Runtime Mitigation

 An internal library – „Mock10‟ – provides support for
replacing function and method implementations at
runtime.
 Uses „Detours‟ a library that Microsoft Research owns:

http://research.microsoft.com/en-us/projects/detours/

 Provides a high-level, C++ API for replacing functions

 It‟s C++0x aware – supporting Lambda‟s

 Supports filtering based on calling frame, calling module and
parameters

2/16/2011 PAGE 49

http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/

Runtime Mitigation (2)

 Allows users to write code like:

auto mock = Mock::Function(::CreateFileW, [] (/* ... */) -> HANDLE
 {
 ::SetLastError(ERROR_PATH_NOT_FOUND);
 return INVALID_HANDLE_VALUE;
 });

2/16/2011 PAGE 50

Demonstration

Summary

 Introduced Unit Testing

 Wrote some Unit Tests
 Used metadata for selection

 Used „fixtures‟ for code reuse

 Mitigated dependencies
 Design-time, compile-time, run-time techniques

2/16/2011 PAGE 52

Questions?

Thank you.

