
Unit Testing in Windows

Mark Schofield 2/16/2011

Preamble

 “Unit Testing in Windows”
 Training provided to Windows Engineers after Windows 7

had shipped

 A few customizations…
 „Internal‟ items removed (sorry!)

 Demo‟s still exist

 Questions are OK
 Let‟s chat about stuff; I‟ll keep us on track

2/16/2011 PAGE 2

Who Am I?

 Mark Schofield
 Lead Software Development Engineer

 12+ years at Microsoft

 8 years as a “Software Design Engineer in Test”

 4+ years owning „Test Authoring‟ in Windows

 Member of the „Engineer Desktop‟ team

 Part of the „Engineering System‟

2/16/2011 PAGE 3

Agenda

 Setting the Stage
 Challenges/Opportunities

 Introducing Unit Testing
 What is a Unit Test

 Benefits

 Write some Unit Tests
 Prep

 TAEF – The “Test Authoring and Execution Framework”

 Creating your Unit Test binary

 Unit Testing Topics
 Mitigating Dependencies

2/16/2011 PAGE 4

Setting the Stage

 Scale
 „Windows‟ is big

 10‟s of thousands of Engineers

 100‟s of millions of lines of code

 Source control, branching and versioning means there‟s many
„views‟ of the 100‟s of millions of lines of code

 Diversity
 Multiple Languages

 C, C++, C++/CLI, C#, Assembly Language

 JScript, Perl, PowerShell

2/16/2011 PAGE 5

Challenges/Opportunities

 Finding bugs sooner saves money/time

2/16/2011 PAGE 6

Cost to fix a bug

Introduction to Unit Testing

 “Unit Testing is a relatively inexpensive, easy way to
produce better code faster.”

 Pragmatic Unit Testing, Andy Hunt and Dave Thomas

 Industry practice
 There‟s a lot of precedent out there

 Developer Activity
 Unit Tests shouldn‟t be „handed-off‟ to the Test team

 2/16/2011 PAGE 7

What is a Unit Test?

 "A unit test is a piece of a code (usually a method) that
invokes another piece of code and checks the
correctness of some assumptions afterward. If the
assumptions turn out to be wrong, the unit test has
failed. A "unit" is a method or function.“
 - Roy Osherove

 Osherove, R. (n.d.). The Art of Unit Testing: with
Examples in .NET.

 2/16/2011 PAGE 8

So, what is a Unit Test?

 Usually a Unit Test exercises some particular method
or class in a particular context;
 Adding a large value to a sorted list; make sure that it‟s added

to the end

 When manipulating state under certain context, that the
correct manipulation happens

 A good starting Unit Test would be to construct a
given class, and verify its initial state
 That‟s the level that we‟re working at

2/16/2011 PAGE 9

Getting everyone on the same page

 If a test requires…

 …any more than guest privileges…

 …read/write access to the host operating system‟s files…

 …the use of an “install” or “update”…

 …a “test” operating system to be installed…

 …crossing process boundaries (including driving UI)…

…it‟s not a Unit Test.

 A Unit Test should run in milliseconds, not seconds.

2/16/2011 PAGE 10

Why be so strict?

 This definition of Unit Tests is what makes them so
valuable

 Fast, portable, reliable because they‟re tightly
scoped and have no dependencies

 High „bang-for-buck‟ – Developers are working at
a level that can leverage their domain expertise

 Forces good separation, cohesion of code

2/16/2011 PAGE 11

Benefits of Unit Testing

 “Unit Testing will make your life easier. It will make
your designs better and drastically reduce the
amount of time you spend debugging.”
 – Pragmatic Unit Testing

 You will know sooner and with greater confidence
that your code is doing what you intended

 If (or when?) requirements change, you can be more
agile in responding to them

2/16/2011 PAGE 12

Unit Testing isn’t (initially) easy

 Unit Testing may require refactoring of code
 The code will be better encapsulated and cohesive as a result

 Writing Unit Tests will encourage Developers to write better
code

 Unit Testing is as much about the journey as it is the
destination.

 Assigning a single Developer to write a whole team's
unit tests is not the right approach

 Unit Testing will take 30% of your development time.

2/16/2011 PAGE 13

Let’s get started!
2/16/2011 PAGE 14

by auspices

Preparation is important
2/16/2011 PAGE 15

by Nathaniel Robertson

Cleaning your code

 Declarations go into header files, implementation
goes into C/CPP files
 If you can‟t #include it, you can‟t Unit Test it.

 Increases reusability, too.

 Make header files self-sufficient
 You‟ll be compiling it from your product code, and your Unit

Test code.

 Minimize compile-time dependencies
 Only #include what you need in the header

 Forward declarations are OK

2/16/2011 PAGE 16

An example CPP file

2/16/2011 PAGE 17

Refactoring your code

 Many of the Design Pattern „best practices‟ make
code more Unit Testable
 Prefer minimal classes to monolithic classes

 Prefer composition to inheritance

 Avoid inheriting from classes that were not designed to be
base classes

 Prefer providing abstract interfaces

 Don‟t give away your internals

 Unit Testing is „encouraging‟ better design.

 Herb Sutter‟s “C++ Coding Standards” is a great
reference here.

2/16/2011 PAGE 18

An example of refactoring

2/16/2011 PAGE 19

We’ll need some tools…
2/16/2011 PAGE 20

by brandi666

Introduction to TAEF

 Test framework used by Windows Developers and
Testers - and other teams across Microsoft
 Will be shipping in an upcoming Windows Driver Kit

 Foundation for the automation stack; Unit
UI/Scenario
 Focusing on Developer and Tester scenarios

 Evolution of existing tools along with industry
practices
 CppUnit, nUnit, JUnit, xUnit, etc…

 Provides a platform to support different testing
methodologies; static, data-driven, etc.

2/16/2011 PAGE 21

TAEF Features

 No managed or native affinity
 Teams can use most productive authoring language

 C/C++, C#, JScript, VBScript

 Minimal dependencies and pay-for-play features

 „Out-of-process‟ execution by default
 Each „Test DLL‟ gets it‟s own „sandbox‟ process.

 Also supports „cross-machine‟ execution.

 Metadata support for selection and runtime
environment configuration

 Integration with internal tools

2/16/2011 PAGE 22

Demonstration

Creating your Unit Test binary

 Source code location
 In the same project as the product code

 Under a “UnitTests” folder, following the product code
structure:

2/16/2011 PAGE 24

Feature1

Feature1Binary1 makes: f1.exe

Feature1Binary2 makes f2.dll

UnitTests

Feature1Binary1 makes f1.unittests.dll

Feature1Binary2 makes f2.unittests.dll

Creating your Unit Test binary

 DLL Naming
 “<product binary>.unittests.dll”

 For example, “notepad.exe” should have Unit Tests in “notepad.unittests.dll”

2/16/2011 PAGE 25

‘MARKING-UP’ THE UNIT TEST

Authoring a C/C++ Test

#include "WexTestClass.h"

class ManagerTests : public WEX::TestClass<ManagerTests>

{

public:

 TEST_CLASS(ManagerTests)

 TEST_METHOD(ConstructionTests)

 {

 // ...

 }

};

2/16/2011 PAGE 26

Compiling your Unit Test binary

 Native C++ Unit Tests should link directly to the „obj‟
files that are produced from the product code.
 This allows the Unit Tests to interact directly with the product

code at the class or function level, without - for example -
having to "DLL export" code for it to be visible.

2/16/2011 PAGE 27

Compiling your Unit Test binary (2)

 DLL exporting the code in order to unit test is not
good;
 It increases the size of the export table of the Product Code

binary

 For classes, exporting the classes restricts the implementation
of the class.

 It increases the surface area of internal APIs

 Don‟t create a „lib‟ of the dll‟s product code just for
Unit Testing
 It‟s an extra build step that‟s unnecessary

2/16/2011 PAGE 28

Writing Unit Tests

 Start simple
 The first test that you write should be incredibly simple, to

make sure that you can create, compile and run it.

 The general pattern for the Unit Test code:
 Set-up all conditions needed for testing

 Call the method to be tested

 Verify that the tested method functioned as expected

 Cleanup anything it needs to

2/16/2011 PAGE 29

Writing Unit Tests

 The „VERIFY‟ macros helps verify the state that you
expect
 Effortless verification/logging APIs; encourages a consistent

logging pattern

 Logs concise message if verification succeeds; more detailed
(type-aware) message if verification fails.

 Streamlines test code by removing the need to nest
verification calls (if compiled with C++ exceptions enabled).

 You‟ll get concise output on success, detailed output
on failure

2/16/2011 PAGE 30

‘Verify’ examples

 Write:
VERIFY_ARE_EQUAL(myExpectedValue, MyFirstTestFunction());

VERIFY_SUCCEEDED(MySecondTestFunction());

 As opposed to:
 int result = MyFirstTestFunction();

 if (result == myExpectedValue)

 {

 Log::Comment("MyFirstTestFunction() succeeded");

 HRESULT hr = MySecondTestFunction();

 if (SUCCEEDED(hr))

 Log::Comment("MySecondTestFunction() succeeded");

 else

 Log::Error("MySecondTestFunction() did not return the expected result");

 }

 else

 Log::Error("MyFirstTestFunction() did not return the expected result");

2/16/2011 PAGE 31

Writing Unit Tests

 Unit Tests should be very linear
 Little – if any – control flow

 If there‟s control flow; should it be a different test?

 Code for the success case
 Production code needs to accommodate all scenarios,

failures, error cases, edge cases, etc, unit test code doesn‟t

 Unit Tests should be quick to write
 Test Harness should support this, by having a low „per test‟

overhead

2/16/2011 PAGE 32

Demonstration

Running Unit Tests

 Using TAEF:
te UIAnimation.unittests.dll

 Select the right tests to get quick verification:
te UIAnimation.unittests.dll /select:@Name='ManagerTests::*'

te UIAnimation.unittests.dll /name:ManagerTests::*

 The selection language allows you to select through
metadata, using „and‟, „or‟ and „not‟ semantics.

2/16/2011 PAGE 34

Demonstration

Setup and Cleanup

 Like most Unit Test harnesses, TAEF supports Setup
and Cleanup „fixtures‟ to allow shared code to
„bookend‟ tests

 You can write fixtures around Tests, a Class or a DLL

 TAEF guarantees that the fixtures are prepared before
the test is run
 All fixtures run on the same thread as the test itself.

2/16/2011 PAGE 36

Setup and Cleanup

2/16/2011 PAGE 37

Adding metadata

 Metadata is simple data associated with the test code.

 Metadata can be applied to DLL‟s, Classes or Tests

 Metadata is „inherited‟

 Metadata is used for:
 Selection

 Runtime environment configuration

2/16/2011 PAGE 38

Adding metadata (2)

 „Marking-up‟ the Unit Test:
#include <WexTestClass.h>

class VariableTests : public WEX::TestClass<VariableTests>

{

public:

 BEGIN_TEST_CLASS(VariableTests)

 TEST_CLASS_PROPERTY(L"Owner", L"MSchofie")

 END_TEST_CLASS()

 TEST_METHOD(ConstructionTests);

 TEST_METHOD(ValueChangeTests);

};

2/16/2011 PAGE 39

Demonstration

Mitigating dependencies

 The most difficult aspect of Unit Testing is „mitigating
dependencies‟

 Unit Tests need to execute the „unit‟ in isolation
 Dependent methods or objects should be replaced

(somehow) with a „test double‟.

 Test Double: A test specific equivalent of product code.

 There‟s different ways to solve this
 Techniques differ based on the language, level, practicality,

cost

2/16/2011 PAGE 41

THE GAMUT OF TECHNIQUES

Mitigating dependencies

 Design-time
 Use Design Patterns to allow the introduction of a Test

Double at Unit Test-time

 Compile-time
 Compile different implementations into the product code,

when compiling the code into your Unit Tests

 Link-time
 Link to test doubles functions, control behavior at runtime

 Run-time
 Change/replace the implementation at runtime

2/16/2011 PAGE 42

Design-time Mitigation

 Use of design patterns decouples implementation
through interfaces
 “Program to an Interface, not an Implementation”

 Interfaces provide a great opportunity for
introducing test doubles

 Unit test can declare a function scoped class that
implements the specific interface

2/16/2011 PAGE 43

Design-time Mitigation

class ComplexSystem

{

public:

 ComplexSystem(IDependency& dependency, int parameter) :

 m_dependency(dependency)
 {

 m_dependency.Initialize(parameter);

 // ...

 }

private:

 IDependency& m_dependency;

};

2/16/2011 PAGE 44

Compile-time Mitigation

 Often „cheaper‟ than design-time mitigation
 Less work

 More performant than „design-time‟ mitigations

 Compile-time polymorphism, not runtime polymorphism

 Uses C++ techniques
 Not suitable for C

 May require moving code into headers

2/16/2011 PAGE 45

EXAMPLE – DEPENDENT CLASS

Compile-time Mitigation

class ComplexSystem

{

public:

 ComplexSystem(int parameter) : d(parameter)
 {

 // ...

 }

private:

 DependentClass d;

};

2/16/2011 PAGE 46

EXAMPLE – DEPENDENT CLASS

Compile-time Mitigation (2)

template <typename TDependentClass = DependentClass>

class ComplexSystemT

{

public:

 ComplexSystemT(int parameter) : d(parameter)
 {

 // ...

 }

private:

 TDependentClass d;

};

typedef ComplexSystemT<> ComplexSystem;

2/16/2011 PAGE 47

EXAMPLE – DEPENDENT CLASS

Compile-time Mitigation (3)

 Within the test, provide a function scoped double,
and provide that to the template class

TEST_METHOD(ComplexSystemTest)

{

 class DoubleDependentClass

 {

 // ...

 };

 ComplexSystemT<DoubleDependentClass> system;

}

2/16/2011 PAGE 48

Runtime Mitigation

 An internal library – „Mock10‟ – provides support for
replacing function and method implementations at
runtime.
 Uses „Detours‟ a library that Microsoft Research owns:

http://research.microsoft.com/en-us/projects/detours/

 Provides a high-level, C++ API for replacing functions

 It‟s C++0x aware – supporting Lambda‟s

 Supports filtering based on calling frame, calling module and
parameters

2/16/2011 PAGE 49

http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/

Runtime Mitigation (2)

 Allows users to write code like:

auto mock = Mock::Function(::CreateFileW, [] (/* ... */) -> HANDLE
 {
 ::SetLastError(ERROR_PATH_NOT_FOUND);
 return INVALID_HANDLE_VALUE;
 });

2/16/2011 PAGE 50

Demonstration

Summary

 Introduced Unit Testing

 Wrote some Unit Tests
 Used metadata for selection

 Used „fixtures‟ for code reuse

 Mitigated dependencies
 Design-time, compile-time, run-time techniques

2/16/2011 PAGE 52

Questions?

Thank you.

