
T.K. Backman
tkback@microsoft.com

Jason Yang
jasony@microsoft.com

Principal Development Lead

Debugging and Tools Group

Windows Engineering Desktop

Microsoft Corporation

Principal Development Lead

Analysis Technologies Team

Windows Engineering Desktop

Microsoft Corporationnnn

Code on a massive scaleCode on a massive scaleCode on a massive scaleCode on a massive scale

3/2/2011University of Washington 2

Developers on a massive scaleDevelopers on a massive scaleDevelopers on a massive scaleDevelopers on a massive scale

Tight constraints on schedulesTight constraints on schedulesTight constraints on schedulesTight constraints on schedules

◦ Company structure

� Why the world is not just about developers ☺

◦ Innovation strategy

� How we actually improve software over time

◦ Dynamic tension

When people are involved, everything changes� When people are involved, everything changes

◦ Development cycles

� How we build software products in cycles

◦ Program analysis

� How we push quality upstream

◦ Windows engineering system

� How we build large-scale products

3/2/2011University of Washington 3

◦ Total size: ~89,000 employees

◦ Windows & Office – “perfect org structure”

� PM – program managers

� Dev – software developers

� Test – software developers in test

◦ Around 1000 PM+Dev+Test feature teams on 100s ◦ Around 1000 PM+Dev+Test feature teams on 100s
of products

3/2/2011University of Washington 4

◦ Team size: ~10,000 employees

◦ Sales & marketing

◦ Project managers / product managers

◦ 30 feature teams
� 1500 Devs

� 1500 Testers

� 1000 PMs

◦ Customer support engineers

◦ Build engineers

3/2/2011University of Washington 5

“I often say that when you can measure what you are
speaking about, and express it in numbers, you
know something about it; but when you cannot
measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you kind; it may be the beginning of knowledge, but you
have scarcely in your thoughts advanced to the state
of Science, whatever the matter may be."

- Lord Kelvin, 1883

3/2/2011University of Washington 6

◦ “A complex of events that reinforces itself through
a feedback loop”

◦ Once you have measurability and virtuous feedback,
you get incremental improvements

◦ Examples

�SQM data, usability testing, Windows Error Reporting,
static analysis, code coverage, test reports, annual
reviews, product reviews

3/2/2011University of Washington 7

� Identify customers and their requirements /
problems / values

� Describe compelling visionsvisionsvisionsvisions for the product

� Establish tenetstenetstenetstenets that act as product themes to
support the visions

� Describe the scenariosscenariosscenariosscenarios that enable tenets

� Create featuresfeaturesfeaturesfeatures that embody the solutions

� Iterate features based on virtuous feedback

3/2/2011University of Washington 8

“The actual process is fluid and evolving…”

� Thought leader: Dev / Test / PM

� Version focus: features vs. bugs

Design agility: waterfall vs. scrum� Design agility: waterfall vs. scrum

� Capacity allocation: design/coding/debugging

� Open source: Cathedral vs. Bazaar

3/2/2011University of Washington 9

� Which form of leadership?

� All teams are organized / led differently
◦ PM driven – best for end user visible shipping
features / products

◦ Dev driven – best for research / highly technical ◦ Dev driven – best for research / highly technical
projects

◦ Test driven – best for sustaining engineering

� Teams tend to evolve as the products /
features mature

3/2/2011University of Washington 10

� How innovative should we be this time?
◦ Focus on features

� Usually results in new value but weak quality

◦ Focus on bugs

� Usually results in great quality but not � Usually results in great quality but not
interesting

◦ Reaching a balance

� Your customers will tell you which they want

3/2/2011University of Washington 11

� Scale of feature iteration?
◦ Waterfall model
� Planning occurs upfront years in advance and is often way
off base by the end of the project

◦ Scrum model
� Planning occurs every 6 weeks and everything is delivered
in small, short sprints with immediate feedback

� May only work well for smaller features/products

◦ Hybrid solutions
� Planning occurs every 5 months and after each milestone
customer feedback is received when major components
are completed and integrated

3/2/2011University of Washington 12

� Where do you spend your time?
◦ Design – OOD, factoring, architecture, algorithms

◦ Coding – producing source, writing unit tests, TDD

◦ Debugging – debuggers, running tests, fixing bugs

� Some typical allocations
◦ OOD: 60% design, 20% coding, 20% debugging◦ OOD: 60% design, 20% coding, 20% debugging

◦ Classic: 40% design, 20% coding, 40% debugging

◦ Agile: 20% design, 30% coding, 50% debugging

� Most sub-teams will vary their approach

3/2/2011University of Washington 13

� Who controls the code?
◦ Cathedral – High priest owns the scripture

� This is the classic one person owns each binary
approach used industry-wide by many companies

◦ Bazaar – everyone can join in

This is the approach used by most non-profit � This is the approach used by most non-profit
organizations where any can contribute

◦ Public vs. private variants

� It’s possible to do “open source” inside a company
where it’s still private, but jointly developed by all

3/2/2011University of Washington 14

1. Product cycle – years per release1. Product cycle – years per release

2. Outer loop – months per milestone

3. Middle loop – days per feature

4. Inner loop – minutes per compilation

3/2/2011University of Washington 15

� Years/Release
◦ Tools
� Project – schedule charts for tracking progress

� Excel spreadsheets – for feature value analysis

� Internal websites – for document management

� SQM product data – for customer usage data� SQM product data – for customer usage data

� Customer feedback – qualitative & quantitative data

◦ Roles
� Sales, marketing, Dev/Test/PM, doc, support

◦ Deliverables
� Requirements/pillars/tenets, Beta/RC/RTM bits,
packaging, docs/kits, sales/marketing campaigns

3/2/2011University of Washington 16

� Months/Milestone
◦ Tools

� Team Foundation Server (TFS) – feature tracking

� Automated testing – functional tests

� UX usability testing – live customer tests

� Product Studio - bug database

◦ Roles

� PM/Test/(Dev)

◦ Deliverables

� Product features, product metrics, quality reports

3/2/2011University of Washington 17

� Days/feature
◦ Tools

� Product Studio

� Unit testing

� Email discussion

� Architecture/design/test documents

◦ Roles

� Dev/Test/(PM)

◦ Deliverables

� Bug fixes, code reviews, binaries, test runs

3/2/2011University of Washington 18

� Minutes/Run
◦ Tools

� Source Depot – manage code versions

� Visual Studio – compile/link/run

� Static analysis – verify written code

� Unit tests – verify basic functionality

◦ Roles

� Dev/(Test)

◦ Deliverables

� Running code, working tests

3/2/2011University of Washington 19

� Visual Studio – write, edit, compile, debug source code

� Team Foundation Server – track product features & tasks

� Source Depot – code changes and source branches

� Product Studio – defect reporting database

� Static analysis – detect code defects at compile time

� TAEF – software unit test framework� TAEF – software unit test framework

� Code coverage – verify completeness of testing

� Application Verifier, Driver Verifier – detect API misuse

� Scalable code search – Windows: 5K binaries,1M
functions,100M lines

� Build machines – daily builds on hundreds of source branches

� …

3/2/2011University of Washington 20

� Actual productive development hours in an 8 hour day are
very, very few; very, very few; very, very few; very, very few; don’t be surprised at the overtime

� You need to learn 20% new20% new20% new20% new technologytechnologytechnologytechnology per year just to stay
even with the rate of change

� Software engineers are always too optimistictoo optimistictoo optimistictoo optimistic about schedulesabout schedulesabout schedulesabout schedules,
particularly new ones; double or triple your estimates

� Devs stay at a small to medium software company with an
average ofaverage ofaverage ofaverage of 24242424----30 months;30 months;30 months;30 months; you will be moving around a lot

� Revenue per employeeRevenue per employeeRevenue per employeeRevenue per employee is crucial: <$200K doom; $200k-300k
OK; >$300K great

� Be sure you pick a product & company you care deeply about

3/2/2011University of Washington 21

Good design + analysis tools + sound engineering process

Significantly fewer code defects

3/2/2011University of Washington 22

3/2/2011University of Washington 23

3,631,361 *
* number of annotations in Windows alone

3/2/2011University of Washington 24

more secure and reliable products

void * memcpy(
void *dest,
const void *src,
size_t count

);

wchar_t *wmemcpy(
wchar_t *dest,

3/2/2011University of Washington 25

wchar_t *dest,
const wchar_t *src,
size_t count

);

3/2/2011University of Washington 26

3/2/2011University of Washington 27

For every buffer API there’s usually a wide version.
Many errors are confusing “byte” vs. “element” counts.

3/2/2011University of Washington 28

For every buffer API there’s usually a wide version.
Many errors are confusing “byte” vs. “element” counts.

Vital property for avoiding buffer overrun.

3/2/2011University of Washington 29

void * memcpy(
_Out_writes_bytes_all_(count) void *dest,
_In_reads_bytes_(count) const void *src,
size_t count

);

wchar_t *wmemcpy(
_Out_writes_all_(count) wchar_t *dest,

3/2/2011University of Washington 30

_Out_writes_all_(count) wchar_t *dest,
_In_reads_(count) const wchar_t *src,
size_t count

);

� Captures programmer intent

� Improves defect detection via tools

� Extends language types to encode program logic properties

Post _Notnull_ void * foo(_Pre_ _Notnull_ int *p);

Precondition: function can assume p to be non-null when called

Postcondition: function must ensure the return value to be non-null

struct buf {
int n;
_Field_size_(n) int *data;

};

Postcondition: function must ensure the return value to be non-null

Invariant: property that should be maintained

3/2/2011University of Washington 31

Code CorrectnessCode CorrectnessCode CorrectnessCode Correctness
Static tools – PREfix, PREfast, Esp

Detects buffer overrun, null pointer, uninitialized memory, leak,
banned API, race condition, deadlock, …

Code CoverageCode CoverageCode CoverageCode Coverage

3/2/2011University of Washington 32

Code CoverageCode CoverageCode CoverageCode Coverage
Code coverage tool – Magellan (based on Vulcan)

Detects code that is not adequately tested

Architecture LayeringArchitecture LayeringArchitecture LayeringArchitecture Layering
Dependency analysis tool – MaX (based on Vulcan)

Detects code that breaks the componentized architecture of product

Accuracy Completeness

False positive:
report is not a bug.

False negative:
bug is not reported.

vs.

don’t miss any bug + report only real bugs == mission impossible

We need to deal with partial programs and partial specifications.

Any of the inputs could trigger a bug in the program.
� No false negative—we have to try all of the inputs.

If we do the inputs in bunches, we’ll have noise.
� No false positive—we have to try the inputs one by one.

But the domain of program inputs is infinite.

3/2/2011University of Washington 33

Dynamic Analysis Static Analysis

Run the program. Simulate many possible runes
of the program.

vs.
Observe program behavior on
a single run.

Observe program behavior on
a collection of runs.

Apply rules to identify deviant
behavior.

Apply rules to identify deviant
behavior.

3/2/2011University of Washington 34

Example: Application Verifier Example: PREfast

Local Analysis Global Analysis

Single-function analysis
(e.g., PREfast)

Cross-function analysis
(e.g., PREfix)

vs.
Scales well enough to fit in
compilers.

Can find deeper bugs.

Example: unused local Example: null dereference due
to broken contract

void bar(int *q) {
q = NULL;
foo(q);

}

void foo(int *p) {
*p = 1;

}

void foo(int *q) {
int *r = q;
*q = 0;

}

Example: unused local
variable to broken contract

3/2/2011University of Washington 35

team
branch

…… ……

…………

team
branch

team
branch

main
branch

3/2/2011University of Washington 36

Forward Integration (FI): code flows from parent to child branch
Reverse Integration (RI): code flows from child to parent branch

client
…………

client client

team
branch

…… ……

…………

team
branch

team
branch

main
branch

3/2/2011University of Washington 37

Microsoft Auto Code Review (OACR)
� runs in the background
� intercepts the build commands
� launches light-weight tools like PREfast plugins

client
…………

client client

team
branch

…… ……team
branch

team
branch

main
branch

analysis cloud

3/2/2011University of Washington 38

client
…………

Quality Gates (static analysis “minimum bar”)
� Enforced by rejection at gate
� Bugs found in quality gates block reverse integration (RI)

client client

team
branch

…… ……

…………

team
branch

team
branch

main
branch

3/2/2011University of Washington 39

Heavy-weight tools like PREfix run on main branch

client
…………

client client

Root Cause
Analysis

Measurement

Engineering
Process

3/2/2011University of Washington 40

Analysis
Technology

Resource
Constraints

Understand important failures in a deep way

Measure everything about the process

Use feedback to improve the engineering process

�From Microsoft annual report
◦Years in business – since 1975

◦Annual revenue - $62.484 BBBB

◦Profit margins – 30.84%◦Profit margins – 30.84%

◦Balance sheet – $39.98 B

◦Revenue/employee: $700K

3/2/2011University of Washington 41

3/2/2011University of Washington 42

