Software Development at Microsoft

T.K. Backman Jason Yang
tkback@microsoft.com jasony@microsoft.com
Principal Development Lead Principal Development Lead
Debugging and Tools Group Analysis Technologies Team
Windows Engineering Desktop Windows Engineering Desktop

Microsoft Corporation Microsoft Corporation

The Real World Challenge

Code on a massive scale

Developers on a massive scale

Tight constraints on schedules

University of Washington 3/2/2011

What We'll Talk About Today

Company structure

- Why the world is not just about developers ©
Innovation strategy

- How we actually improve software over time
Dynamic tension

- When people are involved, everything changes
Development cycles

- How we build software products in cycles
Program analysis

- How we push quality upstream

Windows engineering system

- How we build large-scale products

o

(0]

(0]

(0]

o

o

University of Washington 3/2/2011

Core Disciplines @ Microsoft

> Total size: ~89,000 employees

- Windows & Office - “perfect org structure”
- PM - program managers
- Dev - software developers
- Test - software developers in test

- Around 1000 PM+Dev+Test feature teams on 100s
of products

University of Washington 3/2/2011

Windows Division

- Team size: ~10,000 employees
- Sales & marketing
> Project managers / product managers

> 30 feature teams

- 1500 Devs
« 1500 Testers
- 1000 PMs

- Customer support engineers
- Build engineers

University of Washington 3/2/2011

Software- Art or Science?

“| often say that when you can measure what you are
speaking about, and express it in numbers, you
know something about it; but when you cannot
measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you
have scarcely in your thoughts advanced to the state
of Science, whatever the matter may be."

- Lord Kelvin, 1883

University of Washington 3/2/2011

Virtuous Feedback Loops

“A complex of events that reinforces itself through

o
M
a ee ac OO p Increase in
aggregate
output
Lewer Learning
prlces e
effects
Reduced Ecenemles
costs ef scale
Increased
pro duction

efﬁmency

- Once you have measurability and virtuous feedback,
you get incremental improvements

- Examples

-SQM data, usability testing, Windows Error Reporting,
static analysis, code coverage, test reports, annual
reviews, product reviews

University of Washington 3/2/2011

Product Design

» ldentify customers and their requirements /
problems / values

» Describe compelling visions for the product

» Establish tenets that act as product themes to
support the visions

» Describe the scenarios that enable tenets
» Create features that embody the solutions
» Iterate features based on virtuous feedback

University of Washington 3/2/2011

Dynamic Tension

“The actual process is fluid and evolving...”

» Thought leader: Dev / Test / PM

» Version focus: features vs. bugs

» Design agility: waterfall vs. scrum

» Capacity allocation: design/coding/debugging
» Open source: Cathedral vs. Bazaar

University of Washington 3/2/2011

Thought Leaders

» Which form of leadership?

» All teams are organized / led differently

- PM driven - best for end user visible shipping
features / products

- Dev driven - best for research / highly technical
projects
- Test driven - best for sustaining engineering
» Teams tend to evolve as the products /
features mature

University of Washington 3/2/2011

10

Version Focus

» How innovative should we be this time?
- Focus on features
- Usually results in new value but weak quality
> Focus on bugs

- Usually results in great quality but not
Interesting

- Reaching a balance
- Your customers will tell you which they want

University of Washington 3/2/2011

11

Design Agility

» Scale of feature iteration?

- Waterfall model

- Planning occurs upfront years in advance and is often way
off base by the end of the project

> Scrum model

- Planning occurs every 6 weeks and everything is delivered
in small, short sprints with immediate feedback

- May only work well for smaller features/products
> Hybrid solutions

- Planning occurs every 5 months and after each milestone
customer feedback is received when major components
are completed and integrated

University of Washington 3/2/2011

12

Capacity Allocation

» Where do you spend your time?
- Design - OOD, factoring, architecture, algorithms
> Coding - producing source, writing unit tests, TDD
- Debugging - debuggers, running tests, fixing bugs
» Some typical allocations
- O0D: 60% design, 20% coding, 20% debugging
> Classic: 40% design, 20% coding, 40% debugging
- Agile: 20% design, 30% coding, 50% debugging
» Most sub-teams will vary their approach

University of Washington 3/2/2011

13

Open Source

» Who controls the code?

- Cathedral - High priest owns the scripture

- This is the classic one person owns each binary
approach used industry-wide by many companies

- Bazaar - everyone can join in

- This is the approach used by most non-profit
organizations where any can contribute

> Public vs. private variants

- It’s possible to do “open source” inside a company
where it’s still private, but jointly developed by all

University of Washington 3/2/2011

14

Concentric Feedback Loops

1.
2.
3.
4,

Product cycle - years per release
Outer loop - months per milestone
Middle loop - days per feature

Inner loop - minutes per compilation

University of Washington 3/2/2011

15

Product Cycle

» Years/Release

> Tools

- Project - schedule charts for tracking progress

- Excel spreadsheets - for feature value analysis

- Internal websites - for document management

- SQM product data - for customer usage data

- Customer feedback - qualitative & quantitative data
> Roles

- Sales, marketing, Dev/Test/PM, doc, support
> Deliverables

- Requirements/pillars/tenets, Beta/RC/RTM bits,
packaging, docs/kits, sales/marketing campaigns

University of Washington 3/2/2011

16

Outer Loop

» Months/Milestone
> Tools
- Team Foundation Server (TFS) - feature tracking
- Automated testing - functional tests

- UX usability testing - live customer tests
 Product Studio - bug database

> Roles

« PM/Test/(Dev)

Deliverables

- Product features, product metrics, quality reports

o

University of Washington 3/2/2011

17

Middle Loop

» Days/feature

> Tools
 Product Studio
- Unit testing
- Email discussion
- Architecture/design/test documents
> Roles
- Dev/Test/(PM)
> Deliverables
- Bug fixes, code reviews, binaries, test runs

University of Washington 3/2/2011

18

Inner Loop

» Minutes/Run

> Tools
- Source Depot - manage code versions
- Visual Studio - compile/link/run
- Static analysis - verify written code
- Unit tests - verify basic functionality
> Roles
- Dev/(Test)
> Deliverables
- Running code, working tests

University of Washington 3/2/2011

19

Windows Development Toolset

» Visual Studio - write, edit, compile, debug source code

» Team Foundation Server - track product features & tasks
» Source Depot - code changes and source branches

» Product Studio - defect reporting database

» Static analysis - detect code defects at compile time

» TAEF - software unit test framework

» Code coverage - verify completeness of testing

» Application Verifier, Driver Verifier - detect APl misuse

» Scalable code search - Windows: 5K binaries,1M
functions,100M lines

» Build machines - daily builds on hundreds of source branches

University of Washington 3/2/2011 20

What | Wish Someone Would Have Told Me

» Actual productive development hours in an 8 hour day are
very, very few; don’t be surprised at the overtime

» You need to learn 20% new technology per year just to stay
even with the rate of change

» Software engineers are always too optimistic about schedules,
particularly new ones; double or triple your estimates

» Devs stay at a small to medium software company with an
average of 24-30 months; you will be moving around a lot

» Revenue per employee is crucial: <$200K doom; $200k-300k
OK; >$300K great

» Be sure you pick a product & company you care deeply about

University of Washington 3/2/2011 21

Good design + analysis tools + sound engineering process

Significantly fewer code defects

University of Washington 3/2/2011

22

Push Quality Upstream Matters

$1,000,000

$100,000

$10,000 [

-
/(.
i

. Q0O gew®

Cost Per Bug of Fixing Defects

$1

o
0% <

University of Washington 3/2/2011

Microsoft Source Code Annotation Language (SAL)

3,631,361 *

* number of annotations in Windows alone

¥

more secure and reliable products

University of Washington 3/2/2011

24

What do These Functions Do?

void * mencpy(
voi d *dest,
const void *src,
Size t count

)i

wchar _t *wrentpy(
wchar t *dest,
const wchar t *src,
size_t count

University of Washington 3/2/2011

25

memcpy, wmemcpy .._.,..--*i_‘"'msdn'

Visual Studio 2010 Other Versions «

Copies bytes between buffers. More secure versions of these functions are available; see memcpy_s, wmemcpy_s.

Copy
void *memcpy(
void *dest,
const wvoid *src,
size t count

)

wchar_t *wmemcpy(
wchar_t *dest,
const wchar_t *src,
size t count

Remarks

memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and
destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

University of Washington 3/2/2011 26

Remarks

memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and
destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

University of Washington 3/2/2011

27

For every buffer API there’s usually a wide version.
Many errors are confusing “byte” vs. “element” counts.

Remarks
A

' N\
memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and
destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

University of Washington 3/2/2011

28

For every buffer API there’s usually a wide version.
Many errors are confusing “byte” vs. “element” counts.

Remarks
A

' N\
memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and
destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns. \ Y /

Vital property for avoiding buffer overrun.

University of Washington 3/2/2011

29

SAL Speak

void * mencpy(
~Qut wites bytes all (count) void *dest,
_In reads bytes (count) const void *src,
Size t count

)i

wchar _t *wrentpy/(
~Qut wites all (count) wchar t *dest,
In reads (count) const wchar _t *src,
size_t count

)

,/”///\\\\‘\\\,

4)
v Captures programmer intent

v Improves defect detection via tools
v Extends language types to encode program logic properties
J

\

University of Washington 3/2/2011

Precondition: function can assume p to be non-null when called

[—

> A

' N\

~Post Notnull wvoid * foo(Pre Notnull int *p);

\ J
Y

\

Postcondition: function must ensure the return value to be non-null

struct buf {
I nt n;
_Field size (n) int *data,;

N

Invariant: property that should be maintained

University of Washington 3/2/2011

31

Automated Program Analysis Tools

Code Correctness
Static tools - PREfix, PREfast, Esp

Detects buffer overrun, null pointer, uninitialized memory, leak,
banned API, race condition, deadlock, ...

Code Coverage
Code coverage tool - Magellan (based on Vulcan)

Detects code that is not adequately tested

Architecture Layering
Dependency analysis tool - MaX (based on Vulcan)

Detects code that breaks the componentized architecture of product

University of Washington 3/2/2011

32

Accuracy

False positive:
report is not a bug.

VS.

Completeness

False negative:
bug is not reported.

don’t miss any bug + report only real bugs == mission impossible

~

/\

e need to deal with partial programs and partial specifications.

Any of the inputs could trigger a bug in the program.
» No false negative—we have to try all of the inputs.
If we do the inputs in bunches, we’ll have noise.
» No false positive—we have to try the inputs one by one.

N

But the domain of program inputs is infinite.

University of Washington 3/2/2011

33

Dynamic Analysis

Run the program.

Observe program behavior on
a single run.

Apply rules to identify deviant
behavior.

Example: Application Verifier

VS.

Static Analysis

Simulate many possible runes
of the program.

Observe program behavior on
a collection of runs.

Apply rules to identify deviant
behavior.

Example: PREfast

University of Washington 3/2/2011

34

Local Analysis

Single-function analysis
(e.g., PREfast)

Scales well enough to fit in
compilers.

Example: unused local
variable

void foo(int *q) {
int *r = q;
*q:O;

VS.

Global Analysis

Cross-function analysis
(e.g., PRETfix)

Can find deeper bugs.

Example: null dereference due
to broken contract

void bar(int *q) {
g = NULL;
foo(q);

}

void foo(int *p) {
*p:l;
}

University of Washington 3/2/2011

35

Windows Build Architecture

_

Forward Integration (Fl): code flows from parent to child branch
Reverse Integration (RI): code flows from child to parent branch

J

University of Washington 3/2/2011

36

Local Analysis on Developer Desktop

g

-

N
Microsoft Auto Code Review (OACR) A
> runs in the background
> intercepts the build commands
> launches light-weight tools like PREfast plugins y
J

University of Washington 3/2/2011

37

Quality Gates

Quality Gates (static analysis “minimum bar”)
> Enforced by rejection at gate
» Bugs found in quality gates block reverse integration (RI)

_ J

University of Washington 3/2/2011

Global Analysis via Central Runs

Heavy-weight tools like PREfix run on main branch

University of Washington 3/2/2011

39

Methodology

Root Cal_JSG‘ Measurement
Analysis ﬁ

Engineering
Process

Analysis Resource
Technology Constraints

/

_

N

Understand important failures in a deep way h

Measure everything about the process

Use feedback to improve the engineering process)
J

University of Washington 3/2/2011

40

Bottom Line Results

» From Microsoft annual report
-Years in business - since 1975
-Annual revenue - $62.484 B
> Profit margins - 30.84%
-Balance sheet - $39.98 B
-Revenue/employee: $700K

Questions?

