Reasoning about programs

Team member contribution #3

Assess contribution from Feb 11 through March 10th

- Customer exposure testing and
- Final assignment work periods •

Surveys are open after class Due by 11pm on Friday March 11th

Tips from #1 and #2

- Highlight your accomplishments but don't give yourself points
- Check your addition: values should sum to 100
- Average = $\frac{100}{team \, size 1}$

Collaborative development survey

- 10 simple questions
- On catalyst
- Each participation points
- No wrong answers

• <u>Due by 11pm on Friday March 11th</u>

It's the home stretch

Final (1.0) release due Thursday

presentation due in class

Second midterm

- Design patterns
- Testing

guest speaker: unit testing

- Debugging
- Consistent and complete specifications
- Reasoning about programs

guest speaker: language annotations

Wednesday, March 16, 2:30 PM – 4:20 PM, EEB 045

Ways to verify your code

- The hard way:
 - Make up some inputs
 - If it doesn't crash, ship it
 - When it fails in the field, attempt to debug
- The easier way:
 - Reason about possible behaviors and desired outcomes
 - Construct simple tests that exercise those behaviors
- Another way that can be easy
 - Prove that the system does what you want
 - Rep invariants are preserved
 - Implementation satisfies specification
 - Proof can be formal or informal (we will be informal)
 - Complementary to testing

Reasoning about code

- Determine what facts are true during execution
 - -x > 0
 - for all nodes n: n.next.previous == n
 - array a is sorted
 - -x + y == z
 - if x = null, then x.a > x.b
- Applications:
 - Ensure code is correct (via reasoning or testing)
 - Understand why code is incorrect

Forward reasoning

- You know what is true before running the code What is true after running the code?
- Given a precondition, what is the postcondition?
- Applications:

Representation invariant holds before running code Does it still hold after running code?

• Example:

// precondition: x is even x = x + 3; y = 2x; x = 5; // postcondition: ??

Backward reasoning

- You know what you want to be true after running the code What must be true beforehand in order to ensure that?
- Given a postcondition, what is the corresponding precondition?
- Application: (Re-)establish rep invariant at method exit: what's required? Reproduce a bug: what must the input have been?
- Example:

// precondition: ??
x = x + 3;
y = 2x;
x = 5;
// postcondition: y > x

• How did you (informally) compute this?

Forward vs. backward reasoning

- Forward reasoning is more intuitive for most people
 - Helps understand what will happen (simulates the code)
 - Introduces facts that may be irrelevant to goal
 Set of current facts may get large
 - Takes longer to realize that the task is hopeless
- Backward reasoning is usually more helpful
 - Helps you understand what should happen
 - Given a specific goal, indicates how to achieve it
 - Given an error, gives a test case that exposes it

Forward reasoning example

```
assert x \ge 0;
i = x;
    //x \ge 0 \& i = x
z = 0;
    //x \ge 0 \& i = x \& z = 0
while (i != 0) {
                        \leftarrow What property holds here?
  z = z + 1;
  i = i - 1;
                        ← What property holds here?
}
    //x \ge 0 \& i = 0 \& z = x
assert x == z;
```

Backward reasoning

Technique for backward reasoning:

- Compute the weakest precondition ("wp")
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)

Assignment

```
// precondition: ??
x = e;
// postcondition: Q
Precondition = Q with all (free) occurrences of x
replaced by e
```

• Example:

```
// assert: ??
x = x + 1;
// assert x > 0
```

```
Precondition = (x+1) > 0
```

Method calls

- // precondition: ??
 x = foo();
 // postcondition: Q
- If the method has no side effects: just like ordinary assignment
- If it has side effects: an assignment to every variable in modifies

Use the method specification to determine the new value

If statements

// precondition: ?? if (b) S1 else S2 // postcondition: Q **Essentially case analysis:** wp("if (b) S1 else S2", Q) = $b \Rightarrow wp("S1", Q)$ $\Lambda \neg b \Rightarrow wp("S2", Q)$)

If: an example

```
// precondition: ??
     if (x == 0) {
        x = x + 1;
     } else {
        \mathbf{x} = (\mathbf{x}/\mathbf{x});
      }
     // postcondition: x \ge 0
Precondition:
     wp("if (x==0) {x = x+1} else {x = x/x}", x \ge 0)
     = ( x = 0 \Longrightarrow wp("x = x+1", x \ge 0))
         & x \neq 0 \implies wp("x = x/x", x \ge 0) )
      = (x = 0 \implies x + 1 \ge 0) \& (x \ne 0 \implies x/x \ge 0)
     = 1 \ge 0 \& 1 \ge 0
     = true
```

Reasoning About Loops

- A loop represents an unknown number of paths
 - Case analysis is problematic
 - Recursion presents the same issue
- Cannot enumerate all paths
 - That is what makes testing and reasoning hard

Loops: values and termination

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- 1) Pre-assertion guarantees that $x \ge y$
- 2) Every time through loop
 - $x \ge y$ holds and, if body is entered, x > y
 - y is incremented by 1
 - x is unchanged

Therefore, y is closer to x (but $x \ge y$ still holds)

3) Since there are only a finite number of integers between x and y, y will eventually equal x

4) Execution exits the loop as soon as x = y

Understanding loops by induction

- We just made an inductive argument Inducting over the number of iterations
- Computation induction
 Show that conjecture holds if zero iterations
 Assume it holds after n iterations and show it holds after n+1
- There are two things to prove:

Some property is preserved (known as "partial correctness") loop invariant is preserved by each iteration The loop completes (known as "termination") The "decrementing function" is reduced by each iteration

Loop invariant for the example

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- So, what is a suitable invariant?
- What makes the loop work?
 LI = x ≥ y

1)
$$x \ge 0$$
 & $y = 0 \implies LI$
2) LI & $x \ne y \{y = y+1;\} LI$
3) (LI & $\neg(x \ne y)) \implies x = y$

In practice

I don't routinely write loop invariants

I do write them when I am unsure about a loop and when I have evidence that a loop is not working

- Add invariant and decrementing function if missing
- Write code to check them
- Understand why the code doesn't work
- Reason to ensure that no similar bugs remain