
Regression testing

• Whenever you find a bug

– Reproduce it (before you fix it!)

– Store input that elicited that bug

– Store correct output

– Put into test suite

– Then, fix it and verify the fix

• Why is this a good idea?

– Helps to populate test suite with good tests

– Protects against regressions that reintroduce bug

• It happened once, so it might again

Rules of Testing
• First rule of testing: Do it early and do it often

Best to catch bugs soon, before they have a chance to hide.
Automate the process if you can
Regression testing will save time.

• Second rule of testing: Be systematic
If you randomly thrash, bugs will hide in the corner until you're
gone
Writing tests is a good way to understand the spec

Think about revealing domains and boundary cases
If the spec is confusing  write more tests

Spec can be buggy too
Incorrect, incomplete, ambiguous, and missing corner cases

When you find a bug  fix it first and then write a test for it

Testing summary
• Testing matters

– You need to convince others that module works
• Catch problems earlier

– Bugs become obscure beyond the unit they occur in
• Don't confuse volume with quality of test data

– Can lose relevant cases in mass of irrelevant ones
– Look for revealing subdomains (“characteristic tests”)

• Choose test data to cover
– Specification (black box testing)
– Code (glass box testing)

• Testing can't generally prove absence of bugs
– But it can increase quality and confidence

Debugging

February 14 2011
CSE 403, Winter 2011, Brun

Ways to get your code right

• Validation
– Purpose is to uncover problems and increase confidence

– Combination of reasoning and test

• Debugging
– Finding out why a program is not functioning as intended

• Defensive programming
– Programming with validation and debugging in mind

• Testing ≠ debugging
– test: reveals existence of problem

– debug: pinpoint location + cause of problem

A bug – September 9, 1947
US Navy Admiral Grace Murray Hopper, working on Mark I at Harvard

A Bug’s Life

• Defect – mistake committed by a human

• Error – incorrect computation

• Failure – visible error: program violates its
specification

• Debugging starts when a failure is observed
– Unit testing

– Integration testing

– In the field

Defense in depth

1. Make errors impossible
– Java makes memory overwrite bugs impossible

2. Don’t introduce defects
– Correctness: get things right the first time

3. Make errors immediately visible
– Local visibility of errors: best to fail immediately
– Example: checkRep() routine to check representation invariants

4. Last resort is debugging
– Needed when effect of bug is distant from cause
– Design experiments to gain information about bug

• Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.

• Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

First defense: Impossible by design

• In the language
– Java makes memory overwrite bugs impossible

• In the protocols/libraries/modules
– TCP/IP will guarantee that data is not reordered

– BigInteger will guarantee that there will be no overflow

• In self-imposed conventions
– Hierarchical locking makes deadlock bugs impossible

– Banning the use of recursion will make infinite recursion/insufficient
stack bugs go away

– Immutable data structures will guarantee behavioral equality

– Caution: You must maintain the discipline

Second defense: correctness

• Get things right the first time
– Don’t code before you think! Think before you code.
– If you're making lots of easy-to-find bugs, you're also making hard-to-

find bugs – don't use compiler as crutch

• Especially true, when debugging is going to be hard

– Concurrency
– Difficult test and instrument environments
– Program must meet timing deadlines

• Simplicity is key
– Modularity

• Divide program into chunks that are easy to understand
• Use abstract data types with well-defined interfaces
• Use defensive programming; avoid rep exposure

– Specification
• Write specs for all modules, so that an explicit, well-defined contract

exists between each module and its clients

Third defense: immediate visibility

• If we can't prevent bugs, we can try to localize them to
a small part of the program
– Assertions: catch bugs early, before failure has a chance to

contaminate (and be obscured by) further computation

– Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless
it's in the test driver)

– Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

• When localized to a single method or small module,
bugs can be found simply by studying the program text

Benefits of immediate visibility

• Key difficulty of debugging is to find the code fragment
responsible for an observed problem
– A method may return an erroneous result, but be itself

error free, if there is prior corruption of representation

• The earlier a problem is observed, the easier it is to fix
– For example, frequently checking the rep invariant helps

the above problem

• General approach: fail-fast
– Check invariants, don't just assume them

– Don't try to recover from bugs – this just obscures them

How to debug a compiler

• Multiple passes

– Each operate on a complex IR

– Lot of information passing

– Very complex Rep Invariant

– Code generation at the end

• Bug types:

– Compiler crashes

– Generated program is buggy

Program

Front End

Intermediate
Representation

Optimization

Intermediate
Representation

Optimization

Intermediate
Representation

Code Generation Executable RUN




Don't hide bugs

 // k is guaranteed to be present in a
 int i = 0;
 while (true) {
 if (a[i]==k) break;
 i++;
 }

• This code fragment searches an array a for a value k.
– Value is guaranteed to be in the array.

– If that guarantee is broken (by a bug), the code throws an
exception and dies.

• Temptation: make code more “robust” by not failing

Don't hide bugs

 // k is guaranteed to be present in a
 int i = 0;
 while (i<a.length) {
 if (a[i]==k) break;
 i++;
 }

• Now at least the loop will always terminate
– But no longer guaranteed that a[i]==k
– If rest of code relies on this, then problems arise later

– All we've done is obscure the link between the bug's
origin and the eventual erroneous behavior it causes.

Don't hide bugs

 // k is guaranteed to be present in a
 int i = 0;
 while (i<a.length) {
 if (a[i]==k) break;
 i++;
 }
 assert (i<a.length) : "key not found";

• Assertions let us document and check
invariants
Abort program as soon as problem is detected

Inserting Checks

• Insert checks galore with an intelligent
checking strategy
– Precondition checks

– Consistency checks

– Bug-specific checks

• Goal: stop the program as close to bug as
possible
Use debugger to see where you are, explore
program a bit

Checking For Preconditions

// k is guaranteed to be present in a
 int i = 0;
 while (i<a.length) {
 if (a[i]==k) break;
 i++;
 }
 assert (i<a.length) : "key not found";

Precondition violated? Get an assertion!

Downside of Assertions

static int sum(Integer a[], List<Integer> index) {
 int s = 0;
 for (e:index) {
 assert(e < a.length, “Precondition violated”);
 s = s + a[e];
 }
 return s;
}
Assertion not checked until we use the data

Fault occurs when bad index inserted into list

May be a long distance between fault activation and error detection

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
 for (e:index) {
 assert(e < a.length, “Inconsistent Data Structure”);
 }
}

• Perform check after all updates to minimize
distance between bug occurrence and bug
detection

• Can also write a single procedure to check ALL
data structures, then scatter calls to this
procedure throughout code

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {

 for (e:index) {

 assert(e != 1234, “Inconsistent Data Structure”);

 }

}

Bug shows up as 1234 in list

Check for that specific condition

Checks In Production Code

• Should you include assertions and checks in production code?

– Yes: stop program if check fails – don’t want to
take chance program will do something wrong

– No: may need program to keep going, maybe bug
does not have such bad consequences

– Correct answer depends on context!
• Ariane 5 – program halted because of overflow in unused value,

exception thrown but not handled until top level, rocket crashes…

Midterm Statistics

• Mean: 77

• StDev: 8.0

• Max: 90

• Min: 57

