
UML

January 24, 2011
CSE 403, Winter 2011, Brun

Design and UML Class Diagrams

How do people
draw / write down

software architectures?

Example architectures

person

UW student

CSE 403
student

VerizonWireless

GPS satellite

Cell phone

sea agent

lake agent

amphibious
agent

Big questions

• What is UML?

– Why should I bother? Do people really use UML?

• What is a UML class diagram?

– What kind of information goes into it?

– How do I create it?

– When should I create it?

Design phase

• design: specifying the structure of how a software
system will be written and function, without actually
writing the complete implementation

• a transition from "what" the system must do, to
"how" the system will do it
– What classes will we need to implement a system that

meets our requirements?

– What fields and methods will each class have?

– How will the classes interact with each other?

How do we design classes?

• class identification from project spec / requirements
– nouns are potential classes, objects, fields
– verbs are potential methods or responsibilities of a class

• CRC card exercises
– write down classes' names on index cards
– next to each class, list the following:

• responsibilities: problems to be solved; short verb phrases
• collaborators: other classes that are sent messages by this class

(asymmetric)

• UML diagrams
– class diagrams (today)
– sequence diagrams
– ...

UML

In an effort to promote Object Oriented designs,

three leading object oriented programming

researchers joined ranks to combine their

languages:

– Grady Booch (BOOCH)

– Jim Rumbaugh (OML: object modeling technique)

– Ivar Jacobsen (OOSE: object oriented software eng)

and come up with an industry standard [mid 1990’s].

UML – Unified Modeling Language

• The result is large (as one might expect)
– Union of all Modeling Languages

• Use case diagrams

• Class diagrams

• Object diagrams

• Sequence diagrams

• Collaboration diagrams

• Statechart diagrams

• Activity diagrams

• Component diagrams

• Deployment diagrams

• ….

– But it’s a nice standard that has been embraced by
the industry.

Introduction to UML

• UML: pictures of an OO system
– programming languages are not abstract enough for OO

design

– UML is an open standard; lots of companies use it

• What is legal UML?
– a descriptive language: rigid formal syntax (like

programming)

– a prescriptive language: shaped by usage and convention

– it's okay to omit things from UML diagrams if they aren't
needed by team/supervisor/instructor

Uses for UML

• as a sketch: to communicate aspects of system
– forward design: doing UML before coding
– backward design: doing UML after coding as documentation
– often done on whiteboard or paper
– used to get rough selective ideas

• as a blueprint: a complete design to be implemented

– sometimes done with CASE (Computer-Aided Software
Engineering) tools

• as a programming language: with the right tools, code can

be auto-generated and executed from UML
– only good if this is faster than coding in a "real" language

UML class diagrams

• What is a UML class diagram?

• What are some things that are not
represented in a UML class diagram?

 details of how the classes interact with each other
 algorithmic details
 how a particular behavior is implemented

 UML class diagram: a picture of
 the classes in an OO system
 their fields and methods
 connections between the classes

 that interact or inherit from each other

Diagram of one class

• class name in top of box

– write <<interface>> on top of interfaces' names

– use italics for an abstract class name

• attributes (optional)

– should include all fields of the object

• operations / methods (optional)

– may omit trivial (get/set) methods

• but don't omit any methods from an interface!

– should not include inherited methods

Class attributes

• attributes (fields, instance variables)
– visibility name : type [count] = default_value

– visibility: + public
 # protected
 - private
 ~ package (default)
 / derived

– underline static attributes

– derived attribute: not stored, but can
be computed from other attribute values

– attribute example:
- balance : double = 0.00

Class operations / methods

• operations / methods

– visibility name (parameters) : return_type

– visibility: + public
 # protected
 - private
 ~ package (default)

– underline static methods

– parameter types listed as (name: type)

– omit return_type on constructors and
when return type is void

– method example:
+ distance(p1: Point, p2: Point): double

Comments

• represented as a folded note, attached to the
appropriate class/method/etc by a dashed line

Relationships between classes

• generalization: an inheritance relationship

– inheritance between classes

– interface implementation

• association: a usage relationship

– dependency

– aggregation

– composition

Generalization relationships
• generalization (inheritance) relationships

– hierarchies drawn top-down with arrows pointing
upward to parent

– line/arrow styles differ, based on whether parent is
a(n):

• class:
solid line, black arrow

• abstract class:
solid line, white arrow

• interface:
dashed line, white arrow

– we often don't draw trivial / obvious generalization
relationships, such as drawing the Object class as a
parent

Associational relationships

• associational (usage) relationships

1. multiplicity (how many are used)

• * 0, 1, or more

• 1 1 exactly

• 2..4 between 2 and 4, inclusive

• 3..* 3 or more

2. name (what relationship the objects have)

3. navigability (direction)

 one-to-one
 each student must carry exactly one ID card

 one-to-many
 one rectangle list can contain many rectangles

Multiplicity of associations

Association types
• aggregation: "is part of"

– symbolized by a clear white diamond

• composition: "is entirely made of"

– stronger version of aggregation
– the parts live and die with the whole
– symbolized by a black diamond

• dependency: "uses temporarily"

– symbolized by dotted line
– often is an implementation

detail, not an intrinsic part of
that object's state

 1

 1

Car

aggregation

Engine

Lottery

Ticket
Random

dependency

Page

Book

composition

 *

 1

Composition/aggregation example

 If the movie theatre goes away

 so does the box office => composition

 but movies may still exist => aggregation

Class diagram example

Aggregation –
Order class
contains
OrderDetail
classes. Could
be composition?

No arrows; info can

flow in both directions

UML example: people

Let’s add the visibility attributes

24

Class diagram: voters

Class diagram example: video store

DVD Movie VHS Movie Video Game

Rental Item

Rental Invoice

1..*
1

Customer

Checkout Screen

0..1

1

Simple

 Association

Class

Abstract

Class

Simple

Aggregation

Generalization

Composition

Multiplicity

Class diagram example: student

StudentBody

+ main (args : String[])

+ toString() : String

1 100
Student

- firstName : String

- lastName : String

- homeAddress : Address

- schoolAddress : Address

+ toString() : String

- streetAddress : String

- city : String

- state : String

- zipCode : long

Address

Tools for creating UML diags.

• Violet (free)
– http://horstmann.com/violet/

• Rational Rose

– http://www.rational.com/

• Visual Paradigm UML Suite (trial)
– http://www.visual-paradigm.com/
– (nearly) direct download link:

http://www.visual-paradigm.com/vp/download.jsp?product=vpuml&edition=ce

(there are many others, but most are commercial)

Class design exercise

• Consider this Texas Hold 'em poker game system:
– 2 to 8 human or computer players
– Each player has a name and stack of chips
– Computer players have a difficulty setting: easy, medium, hard
– Summary of each hand:

• Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.

• A betting round occurs, followed by dealing 3 shared cards from the deck.
• As shared cards are dealt, more betting rounds occur, where each player can

fold, check, or raise.
• At the end of a round, if more than one player is remaining, players' hands are

compared, and the best hand wins the pot of all chips bet so far.

– What classes are in this system? What are their responsibilities?
Which classes collaborate?

– Draw a class diagram for this system. Include relationships between
classes (generalization and associational).

