UML

[Covers through Yersion 2.0 OMG UML Standard 0, =

UML DISTILLED

THIRD EDITION

A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

UIFIED o

MODELING
LANGUAGE

MARTIN FOWLER

Desigh and UML Class Diagrams

January 24, 2011
CSE 403, Winter 2011, Brun

How do people
draw / write down
software architectures?

Example architectures

sea agent VerizonWireless

lake agent GPS satellite

CSE 403 amphibious
student agent

Cell phone

Big questions

e Whatis UML?
— Why should | bother? Do people really use UML?

* What is a UML class diagram?
— What kind of information goes into it?
— How do | create it?
— When should | create it?

Desigh phase

* design: specifying the structure of how a software
system will be written and function, without actually
writing the complete implementation

e atransition from "what" the system must do, to
"how" the system will do it

— What classes will we need to implement a system that
meets our requirements?

— What fields and methods will each class have?
— How will the classes interact with each other?

How do we design classes?

 class identification from project spec / requirements
— nouns are potential classes, objects, fields
— verbs are potential methods or responsibilities of a class

e CRC card exercises
— write down classes' names on index cards

— next to each class, list the following:
* responsibilities: problems to be solved; short verb phrases

* collaborators: other classes that are sent messages by this class
(asymmetric)

e UML diagrams

. C%“romer
— class diagrams (today) _— ook
. el s
— sequence diagrams Vo rome
Kros aan!ig

— e Kox, (ohres Number
frn oﬂf‘ ﬁrsf-?

UML

In an effort to promote Object Oriented designs,
three leading object oriented programming
researchers joined ranks to combine their
languages:

— Grady Booch (BOOCH)
— Jim Rumbaugh (OML.: object modeling technique)
— Ivar Jacobsen (OOSE: object oriented software eng)

and come up with an industry standard [mid 1990’s].

UML - Unified Modeling Language

* The result is large (as one might expect)

— Union of all Modeling Languages
« Use case diagrams
« Class diagrams
* Object diagrams
« Sequence diagrams
 Collaboration diagrams
« Statechart diagrams
 Activity diagrams
« Component diagrams
* Deployment diagrams

— But it's a nice standard that has been embraced by
the industry.

Introduction to UML

 UML: pictures of an OO system

— programming languages are not abstract enough for OO
design

— UML is an open standard; lots of companies use it

* What is legal UML?

— a descriptive language: rigid formal syntax (like
programming)

— a prescriptive language: shaped by usage and convention

— it's okay to omit things from UML diagrams if they aren't
needed by team/supervisor/instructor

Uses for UML

as a sketch: to communicate aspects of system
— forward design: doing UML before coding
— backward design: doing UML after coding as documentation
— often done on whiteboard or paper
— used to get rough selective ideas

as a blueprint: a complete design to be implemented

— sometimes done with CASE (Computer-Aided Software
Engineering) tools

as a programming language: with the right tools, code can
be auto-generated and executed from UML

— only good if this is faster than coding in a "real" language

UML class diagrams

What is a UML class diagram?

UML class diagram: a picture of
= the classes in an OO system
= their fields and methods
= connections between the classes
= that interact or inherit from each other

What are some things that are not
represented in a UML class diagram?

details of how the classes interact with each other
algorithmic details
how a particular behavior is implemented

Diagram of one class

class name in top of box
— write <<interface>> on top of interfaces' names
— use italics for an abstract class name

attributes (optional)
— should include all fields of the object

operations / methods (optional)

— may omit trivial (get/set) methods
* but don't omit any methods from an interface!

— should not include inherited methods

Rectangle

- wichth: vt
- height: int
Iarea: double

+ Rectangle(width: int, height: int)
+ distanceir: Rectangle): double

Student

+Hame: String
4d:int
dotal Studentsint

ot D xint

+getMam el =tring

~getE mail Address(1 String
+etT otal Students(Tint

Class attributes

attributes (fields, instance variables)
— visibility name : type [count| = default value

— visibility: + public
protected
- private
~ package (default)
/ derived

— underline static attributes

— derived attribute: not stored, but can
be computed from other attribute values

— attribute example:
- balance : double = 0.00

Rectangle

- wichth: vt
- height: int
Iarea: double

+ Rectangle(width: int, height: int)
+ distanceir: Rectangle): double

Student

+Hame: String
4d:int
dotal Studentsint

ot D xint

+getMam el =tring

~getE mail Address(1 String
+etT otal Students(Tint

Class operations / methods

* operations / methods

visibility name (parameters) : return_type

visibility: + public
protected
- private
~ package (default)

underline static methods

parameter types listed as (name: type)

omit return_type on constructors and
when return type is void

method example:
+ distance(p1: Point, p2: Point): double

Rectangle

- wichth: vt
- height: int
Iarea: double

+ Rectangle(width: int, height: int)
+ distanceir: Rectangle): double

Student

+Hame: String
4d:int
dotal Studentsint

ot D xint

+getMam el =tring

~getE mail Address(1 String
+etT otal Students(Tint

Comments

* represented as a folded note, attached to the
appropriate class/method/etc by a dashed line

Cloneable is a

ArrayList "tagging" interface
with no methocls.

The clone() method

i iz defined in the
D J0bject class,

«interface»
Clonheable

Relationships between classes

e generalization: an inheritance relationship
— inheritance between classes
— interface implementation

e association: a usage relationship
— dependency
— aggregation
— composition

Generalization relationships

generalization (inheritance) relationships

— hierarchies drawn top-down with arrows pointing
upward to parent

— line/arrow styles differ, based on whether parent is
a(n):

e class:
solid line, black arrow

e abstract class:
solid line, white arrow

* interface:
dashed line, white arrow

— we often don't draw trivial / obvious generalization
relationships, such as drawing the Object class as a
parent

«interface»
Shape

+ getArea) double
Ful
|
|
|

RecfangufarShape

- ictth: it
- height: int
fares: douhkle

Rectangular=hapelwidth: int, height: int)
+ cohtainsip: Paint); boolean
+ getAreal) double

T

Rectangle

- xint
-yint

+ Rectangle(:: int, v int, width: int, height: int)
+ containz(p: Point): boolean
+ diztancelr: Rectangle): double

Associational relationships

e associational (usage) relationships

1. mu|t|p||C|ty (how many are used)

— 0, 1, or more
e 1 = 1 exactly
e 2.4 = between 2 and 4, inclusive
e 3.¥ = 3 or more

2. name (what relationship the objects have)

3. navigability o 0

Class A Class B
contains

(2

Multiplicity of associations

= one-to-one

= each student must carry exactly one ID card

Student

1 carries

IDCard

- hame: String
- id: int

- idCard: IDCard

= one-to-many

= one rectangle list can contain many rectangles

Rectangle

- xint
- v int

* cortains

- password: String

RectangleList

+ Fectangle(=: int, v int, width: int, height: int)
+ containz(p: Point): boolean
+ distance(r: Rectangle): double

- list: Arraylist

+ add(r: Rectangle)
+ clear()

Car

Assoclation types ——_

. "e " aggregation

* aggregation: "is part of 11

— symbolized by a clear white diamond Engine
 composition: "is entirely made of") Book

— stronger version of aggregation Compm ;

— the parts live and die with the whole *T

— symbolized by a black diamond

Page

* dependency: "uses temporarily"

— symbolized by dotted line dependency

— often is an implementation \
detail, not an intrinsic part of | Lottery|........ ... Random
that object's state Ticket

Composition/aggregation example

whole > MowvieTheater 1 1 BoxOffice

b +— part
*\“— compasition

TK‘ aggregation
a.*

Movie

0.*

<— part

If the movie theatre goes away
so does the box office => composition
but movies may still exist => aggregation

Class diagram example

class name

attributes

operations

Customer No arrows; info can Order .
flow in both directions Aggregation —
narme 0.* [date
address s Order class
,\ contains
association --\1 caleTay .
1> Payment | 1 =) calcTotal OrderDetall
abstract class™ ; calcTotaleight
t g‘/ classes. Could
amaun
"I ag =
¥ be composition?
role name
generalization __ _\‘ e
> line itern | 1.* €«— multiplicity
| OrderDetail tem <«
Credit Cash Check . . .
quantity - 1 shippingyWeight
number caghTendered | | hame taxstatus - description
fype banklD f/
expDate calcsubTotal getPriceForQuantity
authorized calchyeiant || petieight <
authorized \

navigability

UML example: people

Person Address
Name Stlreet
Phone Number 0 1 ot 1 City
Email Address State
Postal Code
Purchase Parking Pass Country
? Validate
Qutput As Label
Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Let’'s add the visibility attributes

Class diagram: voters

ThevatingPrograrm
Yoter Authentication YoterPerzonalldentification
voterPersonalinfo: VoterPersonalinformation -voterlastiame: String
voterlD: String LvoterFirstiame: String

vioterPassword: securePny

BallotCreation

ballatMame: =tring
candidates: String [];

dizplayBallot]): woid
createBallot) void

this 1z only a small
sabset of the actusl
package ...

Svotertddiddlierame: String
-voterssh String
LvoterAddreszl: String
Lvoter &ddressy String
SvoterCity: String
LvoterState: String
-voter ZIP: String

Hvalidate ZipCodevoter ZIP: String) String
HyalidateState parameterDh oterState: String). St

securePuny

(O PWEntered: JPazzwordField

{=r securePVWIRYY securePY) securePV

Class diagram example: video store

] Customer

Multiplicity]

Simple

Abstract
Class

" Rental Item

1.*

Aggregation

Rental Invoice

Generalization F

Composition

Simple
Association

DVD Movie VHS Movie

Video Game

Checkout Screen

Class diagram example: student

StudentBody Student
1 100
- firstName : String

+ main (args : Stringf[]) i Ir?osreilz:r:eigi'ngddress

- schoolAddress : Address

+ toString() : String
Address

- streetAddress : String
- city : String

- state : String

- zipCode : long

+ toString() : String

Tools for creating UML diags.

* Violet (free)
— http://horstmann.com/violet/

e Rational Rose

— http://www.rational.com/

* Visual Paradigm UML Suite (trial)

— http://www.visual-paradigm.com/
— (nearly) direct download link:

http://www.visual-paradigm.com/vp/download.jsp?product=vpuml&edition=ce

(there are many others, but most are commercial)

Class design exercise

* Consider this Texas Hold 'em poker game system:

2 to 8 human or computer players
Each player has a name and stack of chips
Computer players have a difficulty setting: easy, medium, hard

Summary of each hand:

* Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.

* A betting round occurs, followed by dealing 3 shared cards from the deck.

* As shared cards are dealt, more betting rounds occur, where each player can
fold, check, or raise.

* At the end of a round, if more than one player is remaining, players' hands are
compared, and the best hand wins the pot of all chips bet so far.

What classes are in this system? What are their responsibilities?
Which classes collaborate?

Draw a class diagram for this system. Include relationships between
classes (generalization and associational).

