
• Link on the Calendar page of the class website:
http://www.cs.washington.edu/education/courses/cse403
/11wi/weekly-status.html

• Why is it useful (WIFM)?
• Brings your team, your customer, and the executives up to
speed on your status, to provide an opportunity for reflection,
adjustment and feedback

Project Status Report
Due Sundays by

11pm
One per Project

http://www.cs.washington.edu/education/courses/cse403/11wi/weekly-status.html
http://www.cs.washington.edu/education/courses/cse403/11wi/weekly-status.html
http://www.cs.washington.edu/education/courses/cse403/11wi/weekly-status.html
http://www.cs.washington.edu/education/courses/cse403/11wi/weekly-status.html

XXX Project Status Report xx/yy/2011

Highlights

• <list your biggest accomplishments
of the week, at most 3>

Lowlights

• <list any major problems you ran
into>

Goals for next week

• <what’s your week plan, list 3-5>

Issues

• <what issues are facing you right
now; list at most 3>

Risks

• <what are your biggest risks in the
future; list at most 2>

Staff help required

• <list any questions for/help you need
from the 403 staff>

Schedule Features/Quality Resources

Example Status Report 1/16/2011

Highlights (of last week)

• Created a project wiki

• Established regular group
meeting times

• Formed a plan and schedule for
the SRS assignment

Lowlights (of last week)

• Didn’t complete the customer
meetings and have to get that
information asap

Goals (for this coming week)
• Commit to a feature set

• Have draft SRS in hand by Wed, and
complete by Friday

• Get familiar with dev tools and resources

Issues

• Dividing the work between the team is
a challenge – perhaps creating
subgroups will help

Risks

• We don’t share a common vision and
will diverge during the design step

• Handhelds aren’t available for us to
use

Staff help required

• Need accounts and space on cubist

• Need answer on access to mobile
devices

Schedule Features/Quality Resources

Readings

• Why?

• Why the summaries?

• 1 summary per week!

• Papers available on campus.

Notes on the UI prototyping

• The prototype should not be better than the
final product

• First impressions are important

Architecture

January 19, 2011
CSE 403, Winter 2011, Brun

MIT Stata Center by Frank Gehry

Why architecture?

“Good software architecture makes
the rest of the project easy.”

Steve McConnell, Survival Guide

The basic problem

 Requirements Requirements

 Code Code

?????

How do you bridge the gap

between requirements

and code?

One answer

 Requirements Requirements

 Code Code

a miracle happens

A better answer

 Requirements Requirements

 Code Code

Software Architecture

Provides a high-level

framework to

build and evolve the

system

What does an architecture look like?

Box-and-arrow diagrams

Very common and hugely valuable.

But, what does a box represent?
an arrow?
a layer?
adjacent boxes?

An architecture:
components and connectors

• Components define the basic computations
comprising the system and their behaviors
– abstract data types, filters, etc.

• Connectors define the interconnections between
components
– procedure call, event announcement,

asynchronous message sends, etc.

• The line between them may be fuzzy at times
– Ex: A connector might (de)serialize data, but can it

perform other, richer computations?

14

A good architecture

• Satisfies functional and performance
requirements

• Manages complexity

• Accommodates future change

• Is concerned with

– reliability, safety, understandability, compatibility,
robustness, …

Divide and conquer

• Benefits of decomposition:
– Decrease size of tasks
– Support independent testing and analysis
– Separate work assignments
– Ease understanding

• Use of abstraction leads to modularity
– Implementation techniques: information hiding, interfaces

• To achieve modularity, you need:
– Strong cohesion within a component
– Loose coupling between components
– And these properties should be true at each level

16

Qualities of modular software

• decomposable
– can be broken down into pieces

• composable
– pieces are useful and can be combined

• understandable
– one piece can be examined in isolation

• has continuity
– change in reqs affects few modules

• protected / safe
– an error affects few other modules

Interface and implementation

• public interface: data and behavior of the object that
can be seen and executed externally by "client" code

• private implementation: internal data and methods in
the object, used to help implement the public
interface, but cannot be directly accessed

• client: code that uses your class/subsystem

– Example: radio

• public interface is the speaker, volume buttons, station dial
• private implementation is the guts of the radio; the transistors,

capacitors, voltage readings, frequencies, etc. that user should not
see

17

UML diagrams

• UML = universal modeling language

• A standardized way to describe (draw)
architecture

• Widely used in industry

Properties of architecture

• Coupling

• Cohesion

• Style conformity

• Matching

• Errosion

Loose coupling

• coupling assesses the kind and quantity of

interconnections among modules

• Modules that are loosely coupled (or uncoupled)

are better than those that are tightly coupled

• The more tightly coupled two modules are, the

harder it is to work with them separately

Tightly or loosely coupled?

User Interface Graphics

Data Storage
Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*-End3

*

-End4*

-End5

*

-End6

*

-End7*

-End8*

-End9*

-End10

*

-End11*

-End12*

-End13

*

-End14*

-End15

*

-End16

*

-End17

*

-End18

*

-End19*

-End20*

-End21

*

-End22

*

-End23*

-End24*
-End25*

-End26*

Tightly or loosely coupled?
User Interface Graphics

Data Storage Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*

-End3*

-End4

*

-End5*

-End6*

-End9

*

-End10

*

-End11

*

-End12

*

-End13*

-End14*

-End15*

-End16*

-End7*

-End8 *

Strong cohesion

• cohesion refers to how closely the operations
in a module are related

• Tight relationships improve clarity and
understanding

• Classes with good abstraction usually have
strong cohension

• No schizophrenic classes!

Strong or weak cohesion?
class Employee {

public:
 …
 FullName GetName() const;
 Address GetAddress() const;
 PhoneNumber GetWorkPhone() const;
 …
 bool IsJobClassificationValid(JobClassification jobClass);
 bool IsZipCodeValid (Address address);
 bool IsPhoneNumberValid (PhoneNumber phoneNumber);
 …
 SqlQuery GetQueryToCreateNewEmployee() const;
 SqlQuery GetQueryToModifyEmployee() const;
 SqlQuery GetQueryToRetrieveEmployee() const;
 …
}

An architecture helps with

• System understanding: interactions between modules

• Reuse: high-level view shows opportunity for reuse

• Construction: breaks development down into work items;
provides a path from requirements to code

• Evolution: high-level view shows evolution path

• Management: helps understand work items and track progress

• Communication: provides vocabulary; pictures say 103 words

Architectural style

• Defines the vocabulary of components and connectors
for a family (style)

• Constraints on the elements and their combination
– Topological constraints (no cycles, register/announce

relationships, etc.)

– Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties
of that style (for any architecture in that style)
– Ex: performance, lack of deadlock, ease of making

particular classes of changes, etc.

Styles are not just boxes and arrows

• Consider pipes & filters, for example (Garlan and Shaw)

– Pipes must compute local transformations

– Filters must not share state with other filters

– There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system

– One can’t tell this from a picture

– One can formalize these constraints

scan parse optimize generate

The design and the reality

• The code is often less clean than the design

• The design is still useful

– communication among team members

– selected deviations can be explained more concisely and
with clearer reasoning

Architectural mismatch

• Mars orbiter loss

NASA lost a 125 million Mars orbiter because one
engineering team used metric units while another
used English units for a key spacecraft operation

Views

A view illuminates a set of top-level design decisions

• how the system is composed of interacting parts

• where are the main pathways of interaction

• key properties of the parts

• information to allow high-level analysis and

appraisal

Importance of views

Multiple views are needed to understand the

different dimensions of systems

Functional

Requirements

Performance

(execution)

Requirements

Packaging

Requirements

Installation

Requirements

Booch

Web application (client-server)

Booch

manipulates

Model-View-Controller

Separates the application

object (model) from the

way it is represented to

the user (view) from the

way in which the user

controls it (controller).

User User

Model Model

Controller Controller View View

Application

sees uses

updates

Pipe and filter

Filter - computes on the data

Pipe – passes the data

,,,

Each stage of the pipeline acts independently of

the others.

Can you think of a system based on this

architecture?

 top | grep $USER | grep acrobat

Blackboard architectures

• The knowledge sources: separate,
independent units of application
dependent knowledge. No direct
interaction among knowledge sources

• The blackboard data structure: problem-
solving state data. Knowledge sources
make changes to the blackboard that lead
incrementally to a solution to the
problem.

• Control: driven entirely by state of
blackboard. Knowledge sources respond
opportunistically to changes in the
blackboard.

36

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern
recognition.

Hearsay-II: blackboard

37

