Software Development Lifecycle

(
f

thinking about the process

Januar y 5, 2011
CSE 403, Winter 2011, Brun

How complex is software?

What is complex?

Afghanistan Stability / COIN Dynamics ~g . S

Popul stloniPopular Support
Infrastructure, Ecomomy. & Servces
Government
Afah

il Security Foreass
Inturgents
Crim# and Marcotics
Coslition Forces & Actions
Physieal Environment

._-__-—-
s TO INSURGENT

ares l i . ‘_
W?m? s m,_%&.‘:ﬁ: FACTIONS
AN

! ‘_' / :

OUTSIDE SUPPORT

e fa;ANSF I

i [T::'m"&, l
- - %TIL‘ITIONALM B
L RAid Fawgritism L. Bollcy Commin

A i s
l&l&rmn i n.] 5 P L
s s : ey Sl
9 - aav'l
Sacuri

CAPACITY & fue o iy - P

PRIORITIES < BEEEE N1 2.
RIC

e AN R

7 W\ Fbean
POPULATION™.
CONDITIONS o
V| _~&BELIEFS siin. ¥

ity ERNE v \POPULAR .z
R T o || G UpN - N ’ Y SUPPORT =it

\Izﬁhm L e

*“$DOMESTIC

B Employssnt thﬁr". L5

SURPORL. ~av. [

[at]

[Smulkif
=

~ X/ INFRASTRUCTURE,
S SERVICES &
~-ECONOMY ,

'

WORKING DRAFT - V3

|||||

Consulting
Giroup

© PA Knowledae Limied 2000 Page 22

How complex is software?

* Measures of complexity:
— lines of code
— number of classes
— number of modules
— module interconnections and dependencies
— time to understand
— # of authors
— ... many more

How complex is software?

* Measures of complexity:

— lines of code Windows Server 2003: 50 MSLoC
Debian 5.0: 324 MSLoC

How big is 324 MSLoC?

50 lines/page = 6.5M pages

1K pages/ream = 6.5K reams

2 inches/ream = 13K inches

13K inches = twice the height of the Allen Center

5 words/LoC @ 50 wpm = 32M min =~ 61 years

And we don’t just want random words,
we want compiling code!

Managing software development

Requirements

Design

mplementation
Testing
Maintenance

Outline

* Why do we need a lifecycle process?

* Lifecycle models and their tradeoffs
— code-and-fix
— waterfall
— spiral
— staged delivery
— ... there are many others

Ad-hoc development

* Creating software without any formal
guidelines or process

* Advantage: easy to learn and use!

* Disadvantages?

Ad-hoc development disadvantages

* Some important actions (testing, design)
may go ignored

* Unclear when to start or stop each task
* Scales poorly to multiple people
* Hard to review or evaluate one's work

The later a problem is found in software,
the more costly it is to fix.

What makes a lifecycle?

Requirements

Design

mplementation
Testing
Maintenance

How do we combine them?

Benefits of using a lifecycle

provides a work structure
forces thinking about the “big picture”

helps prevent decisions that are individually
on target but collectively misdirected

assists management and progress control

What are some drawbacks?

Are there analogies outside of SE?

Consider the process of building
the Paul Allen Center 22N

Project with little attention to process

100%

Percent

of Effort Productive Work

0% ~

Beginning End of
of Project Project

Time

Survival Guide:
McConnell p24

Project with early attention to process

aQ v 3 - F ol i e P~ T s T I |
100 1'6 [:“‘f.,lﬂn-r e, _"-:--‘:_'J_.W_."'.- n et e B S R R '-_:'-,1'-\,"'_"-,"-.":_":, o e e %, M e e e, T e, T, e e, Y

b T e N T T T M W M S W M M e M S e M e M e e e e T T, e T T e Ty Ty

..........................

Percent
of Effort

Productive Work

aos R

of Project Project

Survival Guide:
McConnell p25

Let’s talk about some lifecycle models

Code-and-fix model

— —
System
Specification
{1mdavhed

Release
{mavbhe?

Code-and-fix model

* Advantages
— Low overhead
— Applicable to small, short-lived projects

* Dangers
— No way to assess progress and manage risks
— Hard to accommodate changes
— Unclear what and when will be delivered
— Hard to assess quality

Waterfall model

System
Requirements «
Validation
Software
» Requirements «
Validation

A

Preliminary
Design

Validation

A

Detailed
Design

Validation

Code &

» Debug

Development test

Test

Validation test

Operations &
Maintenance

A

Revalidation

Waterfall model advantages

* Works well for well-understood projects
— tackles all planning upfront

— no midstream changes leads to
efficient software development process

» Supports experienced teams
— Orderly, easy-to-follow sequential model
— Reviews help determine readiness to advance

Waterfall model limitations

Difficult to do all planning upfront
No sense of progress until the end

Integration occurs at the very end

— Defies the “integrate early and often” rule

— Without feedback, solutions are inflexible

— Final product may not match customer’s needs
Phase reviews are massive affairs

— It takes a lot of inertia and $ to make changes

Spiral Model

Determine objectives
Identify and resolve risks
Evaluate alternatives

E

- o Dret i
Develop and verify deliverables ohjectives,
q Iter
Plan next spiral et

Commit (or not) to next spiral

Commuit to an
approach for
the next
iteration

T

"Curmulative cost

Identify and
resohve risks

Revigw 8 | |
Partiticn Requirements Simulations, v
plan, litecycle e medals
banchmarks
MENts foopyare /Dstailed
design
Plan the next Integralion | Design validation Lnait |
iteration and test plan | and ver fication,, e
| Integration
: and test ;
S Acceptance Develop the
. Jovadas deliverables for the
Rt??'id Development, Steve MeComnell Felease Ll Ll B R a 4]

that they are correct

Spiral model

* Oriented towards phased reduction of risk

» Take on the big risks early
— are we building the right product?
— do we have customers for this product?

— is it possible to use existing technology?
* tomorrow’s technology?

* Progresses carefully toward a result

Spiral model advantages

Especially appropriate at the beginning of
the project, allowing requirement fluidity

Provides early indication of unforeseen
problems

Allows for change
As costs increase, risks decrease!

Addresses the biggest risk first

Spiral model disadvantages

* Alot of planning and management
* Requires customer and contract flexibility

* Developers must be able to assess risk

Staged delivery model

Software
Concept |
—\
r Requiremen _
&ndl\s s
Architecrural |

Design | ‘

J

§
L—{Smge 1: Detailed design. code. debug, test, and deliven}

[Stage 2: Deraled design. code, debug, test. and de}i\-'erﬂ
Y
) i
LStage n: Detailed design. code. debug, test. and deli\'er_\]

first, waterfall-like
then, short release cycles: plan, design, execute, test, release
with delivery possible at the end of any cycle

Staged delivery model advantages

Can ship at the end of any release cycle

Intermediate deliveries show progress,
satisfy customers, and lead to feedback

Problems are visible early (e.g., integration)

Facilitates shorter, more predictable
release cycles

Very practical, widely used and successful

Staged delivery model disadvantages

* Requires tight coordination with
documentation, management, marketing

* Product must be decomposable

 Extra releases cause overhead

What's the best model?

Consider

* The task at hand

* Risk management

* Quality / cost control

* Predictability

* Visibility of progress

« Customer involvement and feedback

Aim for good, fast, and cheap.
But you can't have all three at the same time.

