
University of Washington
CSE 403 Software Engineering

Spring 2011

Final exam
Friday, June 3, 2011

Name:

CSE Net ID (username):

UW Net ID (username):

This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 34 questions and 7
pages (including this one), totaling 100 points. Before you start, please check your copy to make sure it is
complete. Turn in all pages, together, when you are finished. Write your initials on the top of ALL pages.

Please write neatly; we cannot give credit for what we cannot read.
Good luck!

Page Max Score
2 24
3 20
4 14
5 17
6 14
7 11
Total 100



Initials: 1 TRUE/FALSE

1 True/False

(2 points each) Circle the correct answer. T is true, F is false.

1. T / F The spiral lifecycle model is always better than the outdated waterfall model.

2. T / F Including the users/customers in the process of developing requirements will yield a better
product.

3. T / F Including the users/customers in the process of designing the architecture will yield a better
product.

4. T / F Recall that the null object pattern performs a no-op at each method call where null would
otherwise be dereferenced. One advantage is that this is more efficient than checking, at each method
invocation, whether the receiver (the this object on which the method is being invoked) is null.

5. T / F Another advantage of the null object pattern is that it makes the code shorter and its behavior
easier to understand, compared to other approaches to addressing null pointer errors.

6. T / F The piece table is an example of a lazy data structure, in which as few changes as possible are
performed.

7. T / F It is possible for a single “piece”, or part of the original file, to appear multiple times in a
piece table.

8. T / F When the writes to a data structure have spatial locality (they are nearby one another in mem-
ory), then they can be made faster.

9. T / F There exist datasets for which a hash table has O(n) performance for insertion, deletion, and
searching — the same as for a linked list.

10. T / F An example of refactoring is adding new features to satisfy a customer requirement discovered
after a project is shipped.

11. T / F For every refactoring that can improve the design of a software system, undoing or reversing
the refactoring can also improve the design of the same system.

12. T / F Refactoring is a risk: it incurs a cost now, in return for potential payoff later.

2



Initials: 1 TRUE/FALSE

13. T / F The map in MapReduce is different from the map in a functional programming language.

14. T / F The purpose of a code review is to examine one specific diff or commit — sometimes after
but usually before it is incorporated into the main code repository.

15. T / F An advantage of a GUI is that it permits an experienced user to work faster.

16. T / F Suppose you are able to find the true revealing sub-domains for a software system, and you
design unit tests for it accordingly. Later, if you change your implementation, it is also necessary to
update your tests so that they still cover the revealing sub-domains, which may have changed.

17. T / F It is theoretically possible for testing to prove the absence of bugs.

18. T / F Unit tests should be written both before and after code is written.

19. T / F Boundary testing can catch off-by-one errors, but not null pointer exceptions.

20. T / F Interviewers generally prefer to hire applicants who can answer questions quickly, without
having to ask a lot of clarifying questions first.

21. T / F Interviewers are looking to see you get to the best/most optimal solution on any problem they
give you.

22. T / F If you are having issues with a team member, you should inform your management about the
potential problem.

3



Initials: 2 MULTIPLE CHOICE

2 Multiple choice

23. (5 points) Which of the following are reasons for performing a code review? Circle all that apply.

(a) improve the design early in the lifecycle

(b) improve the design late in the lifecycle

(c) educate new team members

(d) find bugs

(e) check code coverage

(f) ensure conformance to code style, such as indentation

(g) evaluate the programmer for promotion

(h) increase the “bus number” of the code

24. (3 points) Which usually uses more memory?

(a) depth-first search

(b) breadth-first search

(c) neither: usually the same memory usage

25. (3 points) Over the lifetime of a typical successful software project, what percentage of effort is spent
on maintenance (as opposed to initial development)?

(a) 10%

(b) 50%

(c) 90%

26. (3 points) In the standard design encouraged by object-oriented languages, which is easier to add?

(a) new operations on existing objects

(b) new objects that support existing operations

(c) equally easy/hard

4



Initials: 3 SHORT ANSWER

3 Short answer

27. (3 points) To implement the singleton pattern often (but not always) requires using what other pattern?

28. (6 points) In one phrase each, state the two key limitations of constructors in Java.

(a)

(b)

29. (4 points) Your goal is to build a highly reliable system, so you run three independently-developed
programs (each developed to the same spec) on three separate computers, and use the majority answer.
Why doesn’t this significantly improve your reliability? Explain in one sentence.

30. (4 points) Under what circumstances does a GUI show an hourglass/clock/spinning ball? Answer in
one phrase or sentence. Be specific.

5



Initials: 3 SHORT ANSWER

31. (8 points) Consider a wrapper whose implementation logs each call that occurs.

In no more than 2 sentences each, explain when the wrapper should be considered a decorator (and
why), and when that same wrapper should be considered a proxy (and why).

• Decorator:

• Proxy:

32. (6 points) It is cheaper and faster to fix known bugs before you write new code. Why? In one phrase
or sentence each, give three reasons. Give reasons that are as different from one another as possible.

•

•

•

6



Initials: 3 SHORT ANSWER

33. (3 points) In one phrase, what is MapReduce’s biggest advantage over older parallel database systems?

34. (8 points) Recall the architecture of MapReduce, which uses two routines with the following signa-
tures:

• map(k1, v1)→ list of 〈k2, v2〉
• reduce(k2, list of v2)→ list of v3

Write pseudocode for an anagram generator. An anagram of a word is a dictionary word that can be
obtained by rearranging the letters in the original word. For example, “team” is an anagram of “meat”
(and vice versa), but “aemt” is not an anagram because it is not a real word.

The anagram generator takes as input a dictionary — a list of words. Assume that each k1 is a word.
You will not need to use v1; it can be a dummy value.

The anagram generator produces as output a list of records, where each record maps a word to a list
of all its anagrams (including itself). So, the type of v3 is a pair 〈word, list of words〉.
You should only need 1–2 lines of pseudo-code for each of map and reduce. Your pseudocode can be
high-level, but must be precise.

(a) What is the type of k2?

(b) What is the type of v2?

(c) What is the pseudocode for map?

(d) What is the pseudocode for reduce?

7


