
CSE 403 Wrapup

Software lifecycle

• Determines the order for tasks:
– Requirements

– Design

– Implementation

– Testing

– Maintenance

• Goal: Perform work as early as practical
– Costly to discover information or make changes late

– Costly to make decisions too early

– Costly to do tasks multiple times

• In CSE 403: iterative process

Requirements

• “What”, not “how”

• Reflects user view, not developer view

• Understand the customer
– Preferably better than they understand themselves

– Seek transformational solutions (beware risk)

• Common technique: use case / scenario / story

• User interfaces
– High-level concepts & metaphors

– Low-level efficiency

• Get feedback early (example: paper prototype)

Architecture

• Divide and conquer (with simple interfaces)

• Modules for logical units of computation

– Minimize coupling, maximize cohesion

• Draw it as a picture (UML)

– Key purpose: to communicate to others

• Interactions are part of the architecture too

Divide and conquer:

Modularity, abstraction, specifications

• No one person can understand all of a realistic
system

• Modularity permits focusing on just one part

• Abstraction enables ignoring detail

• Specifications and documentation formally

describe behavior

• Helps to understand/fix errors

– Or to avoid them in the first place

Teamwork

• Dividing work
– By module in the architecture

– By task (PM, development, testing, …)

• Decisions
– Get understanding and buy-in

• Communication
– Specifications

– Deadlines

– Effective meetings

• Motivation, trust, and morale

Working in a team

• No one person can understand all of a realistic system
– Break the system into pieces

– Use modularity, abstraction, specification, documentation

• Different points of view bring value

• Work effectively with others
– Sometimes challenging, usually worth it

• Manage your resources effectively
– Time, people

– Engineering is about tradeoffs

• Both technical and management contributions are
critical

Process

Needed to keep your project under control:

• Specification

• Schedule

• Source control

• Testing

• Automated build and test

• Bug database (and fix bugs first)

Testing

• Goal: completely verify functionality

– In practice: heuristics improve completeness

• Much cheaper than discovering errors later

• Be systematic

• Test early and often

• Tests are code too

• Involve users

• Can be fun!

Reviews

• Another way to get feedback early

• Team members critique documents, code, etc.

• Greatly improves quality

• Identifies opportunities for refactoring

• Refactoring improves the design

– Design quality has many facets, depends on task

Design

• Design of classes: similar considerations to

architecture

• Design patterns: the vocabulary of program

development

– Helps you design

– Helps you communicate

• Don’t reinvent the wheel!

Getting it right ahead of time

• Design: predicting implications

• Example: understanding interconnections

• Understanding the strengths and weaknesses

• If you don’t understand a design, you can’t

use it

• Documentation matters!

Documentation

• Everyone wants good documentation when using
a system

– Not everyone likes writing documentation

• What’s obvious to you probably isn’t obvious to
others

• Documentation is the most important part of a
user interface (in a nontrivial system)

• “An undocumented software system has zero
commercial value.” –John Chapin (CTO of Vanu,
Inc.)

Maintenance

• Maintenance accounts for most of the effort
(often 90% or more) spent on a successful
software system

• A good design enables the system to adapt to
new requirements while maintaining quality

– Think about the long term, but don’t prematurely
optimize

• Good documentation enables others to
understand the design

Interviewing

• Know your audience

• Communicate about yourself

• Be competent

• Be honest (about yourself, knowledge, etc.)

• You are evaluating them too

What you have learned in CSE403;

what you will learn

• Compare your skills today to last year

– Bottom line: Your project would be easy for you

• This is a measure of how much you have learned

• Your next project can be much more ambitious

• You will continue to learn

– Building interesting systems is never easy

• Like all worthwhile endeavors

– Practice is a good teacher

• Requires thoughtful introspection

• Don’t learn only by trial and error!

Course evaluation

• Please complete the course evaluation form

– Useful to future students

– Useful to course staff

– Useful to the department

Go forth and conquer

• System building is fun!

– It’s even more fun when you build them successfully

• Pay attention to what matters

– Use the techniques and tools of CSE 403 effectively

