
Design Patterns (2)

CSE 403

Object pool pattern

• Problem:
– Expensive to create objects (allocation, initializaton)

– Expensive to destroy objects (cleanup, GC)

– Few objects are in use at any one time

• Examples: connections, threads, memory, fonts

• Solution: re-use objects
– Obtain objects from the pool

• Re-initialize some fields

• What if the pool is empty?
– Err

– Create and add to the pool

– Wait for resources to become available

– Return them to the pool when done (empty some fields)

Null object pattern

• Problem: null pointer errors

• myMap.get(key).doSomething()

• Solutions:

– Suffer a crash at run time

– Test return value before use

– Statically prove correctness

– Make doSomething work on null values

– Return a special value for which doSomething is a
no-op (null object pattern)

Memento pattern

• Representation of previous state

• Permits undo or redo

• Examples:

– seed in a pseudo-random number generator

– state in a FSM

• Issues:

– efficient representation

– undoability of undo

– how does your DVCS handle this?

The World Wide Web:

Stateful connections or not?

Word processor data structures

• Represent the text and formatting of the

document

• Goals:

– fast lookup (char at a location)

– fast insertion/deletion

– supports multi-level undo

– scales to large documents

Linked list of pieces

• Linked list of text fragments

• User operations:
– insert

– delete

– move to new location

– search

• Additional data structure operations:
– split, merge

• How to support undo?

The quick brown fox jumped

Piece tree
Size of left

subtree

Size of right

subtree

Piece table

• List of pieces

– Each piece is part of original file, or an addition

• Pieces are added at end of a buffer (fast)

• No mutation or copying of text data structures

• Originally used in the Bravo editor (Lampson &

Simonyi)

MapReduce

• Goal: process large amounts of data

– parallelism

– fault recovery

– simple programming model

• Previous approaches:

– Databases (including parallel databases)

– Ad hoc programs

MapReduce architecture

• map(k1, v1) -> list of <k2, v2>

• reduce(k2, list of v2) -> list of v3

mapper

mapper

mapper

reducer

reducer

reducer

input

data
output

Arbitrary

split

Pairs with

same key
Concatenate

Stored in a file

(communicate

the file name)

Count each word in a corpus (a set of

documents)

map(Document key, String text):
for each word w in text:

EmitIntermediate(w, “1”)

reduce(String word, Iterator values):
int result = 0
for each v in values:

result += toInt(v)
Emit(new Pair(word, toString(result)))

Distributed grep

• Input: corpus (set of documents)

• Output: lines matching a given pattern

• map: emits a line if it matches the pattern

• reduce: identity function that just copies the

supplied intermediate data to the output.

URL Access Frequency

• Input: logs of web page requests

• Output: for each webpage, number of

accesses

• map: outputs <URL, 1>

• reduce: adds together all values for the same

URL and emits a <URL, total count> pair

Reverse Web-Link Graph

• Input: Set of webpages

• Output: For each URL, webpages that link to
it

• map: outputs <target, source> pairs for each
link to a target URL found in a page named
"source“

• reduce: concatenates the list of all source
URLs associated with a given target URL and
emits the pair: <target, list(source)>

Inverted index

• Input: corpus (set of documents)

• Output: For each word, a list of documents in
which it appears

• map: parses each document, and emits a
sequence of <word, document ID> pairs

• reduce: accepts all pairs for a given word,
sorts the corresponding document IDs and
emits a <word, list(document ID)> pair.

– Optionally, keep track of word positions.

Anagram generator

• Input: list of words

• Output: list of all possible anagrams

• map: outputs <word with letters sorted,

original word>

• reduce(sortedWord, Iterator realWords):

for each realWord:

output <realWord, realWords>

