
Design patterns

CSE 403

What is a design pattern?

• A standard solution to a common programming
problem
– a design or implementation structure that achieves a

particular purpose

– a high-level programming idiom

• A technique for making code more flexible
– reduce coupling among program components

• Shorthand for describing program design
– a description of connections among program

components

– the shape of a heap snapshot or object model

Why should you care?

• You could come up with these solutions on

your own

– You shouldn't have to!

• A design pattern is a known solution to a

known problem

Example design patterns

• Encapsulation (data hiding)

• Subclassing (inheritance)

• Iteration

• Exceptions

• Generics

Creational patterns

Constructors in Java are inflexible
1. Can't return a subtype of the class they belong to

2. Always return a fresh new object, never re-use one

• Factories
– Factory method

– Factory object

– Prototype

– Dependency injection

• Sharing
– Singleton

– Interning

– Flyweight

Structural patterns: Wrappers

A wrapper translates between incompatible interfaces

Wrappers are a thin veneer over an encapsulated class

modify the interface

extend behavior

restrict access

The encapsulated class

does most of the work

Subclassing vs. delegation

Pattern Functionality Interface

Adapter same different

Decorator different same

Proxy same same

Composite pattern (part-whole relations)

A client can manipulate the whole or any part

Example: AST (abstract syntax tree)

Question: Should we group together the code for a
particular operation (procedural pattern) or the code
for a particular expression (interpreter pattern)?

(A separate issue: given an operation and an expression,
how to select the proper piece of code?)

Objects

CondExpr EqualOp

Operations
typecheck

pretty-print

When (not) to use design patterns

• Rule 1: delay
– Understand the problem & solution first, then improve it

• Design patterns can increase or decrease
understandability
– Add indirection, increase code size
+ Improve modularity, separate concerns, ease description

• If your design or implementation has a problem,
consider design patterns that address that problem

• References:
– Design Patterns: Elements of Reusable Object-Oriented

Software, by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Addison-Wesley, 1995.

– Effective Java: Programming Language Guide, by Joshua
Bloch, Addison-Wesley, 2001.

