Design patterns

CSE 403



What is a designh pattern?

e A standard solution to a common programming
problem

— a design or implementation structure that achieves a
particular purpose

— a high-level programming idiom
e A technique for making code more flexible
— reduce coupling among program components

e Shorthand for describing program design

— a description of connections among program
components

— the shape of a heap snapshot or object model



Why should you care?

* You could come up with these solutions on
your own

— You shouldn't have to!

* A design pattern is a known solution to a
known problem



Example design patterns

Encapsulation (data hiding)
Subclassing (inheritance)
Iteration

Exceptions

Generics



Creational patterns

Constructors in Java are inflexible
1. Can't return a subtype of the class they belong to
2. Always return a fresh new object, never re-use one

* Factories

— Factory method

— Factory object

— Prototype

— Dependency injection
e Sharing

— Singleton

— Interning

— Flyweight



Structural patterns: Wrappers

A wrapper translates between incompatible interfaces
Wrappers are a thin veneer over an encapsulated class

modify the interface Pattern Functionality |Interface
extend behavior Adapter same different
restrict access Decorator | different same
The encapsulated class
Proxy same same

does most of the work

Subclassing vs. delegation



Composite pattern (part-whole relations)

A client can manipulate the whole or any part

Example: AST (abstract syntax tree)
Objects

CondExpr EqualOp

typecheck

Operations

pretty-print

Question: Should we group together the code for a
particular operation (procedural pattern) or the code
for a particular expression (interpreter pattern)?

(A separate issue: given an operation and an expression,
how to select the proper piece of code?)



When (not) to use design patterns

 Rule1: delay
— Understand the problem & solution first, then improve it

 Design patterns can increase or decrease
understandability
— Add indirection, increase code size
+ Improve modularity, separate concerns, ease description
* If your design or implementation has a problem,
consider design patterns that address that problem
 References:

— Design Patterns: Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Addison-Wesley, 1995.

— Effective Java: Programming Language Guide, by Joshua
Bloch, Addison-Wesley, 2001.



