UML

UNIFIED o UML DISTILLED

MODELING THIRD EDITION
LANGUAGE

A Brier Guing 1o THE STavnamn
Orsect Mopeise Lastuacy

UML Sequence Diagrams

CSE 403

UML sequence diagrams

* sequence diagram: an “interaction diagram”
that models a single scenario executing in the
system

— one of the most common UML diagrams

* relation of UML diagrams to other exercises:
— CRCcards ->class diagram

— use cases -> sequence diagrams

Key parts of a sequence diagram

e participant: an object or an entity;
the sequence diagram actor

— sequence diagram starts with an unattached
"found message" arrow

* message: communication between objects

* the axes in a sequence diagram:
— horizontal: which object/participant is acting
— vertical: time (|, forward in time)

Sequence diagram from use case
2 HO HO O O

Basic Course 1: Customer 2: Search Page 3: Search Results Page 4: Catalog 5: Search Results

The Customer specifies an
author on the Search Page

| onSearch() I
and then presses the Search U
I
I
I
|
I
|
I
I
I
I
|

button.

The system validates
the Customer’s search criteria.

The system searches the Catalog
for books associated with the

specified author,
When the search is complete, the

system displays the search results
on the Search Results Page.

>0

I

I

| validateSearchCriteria()
L<

searchByAuthor()

|

create()

Alternate Course

. displayErrorMessage()
If the Customer did not enter the

name of an author before pressing ”(

the Search button, the system displays | |

an error message to that effect and | |

prompts the Customer to re-enter an

author name. | I

I I
| |
I I
I I
| |
I I
I > |
| U >

| " displa

| < play() I [j

I I I

I l I I
I I I
| I |
I I I
I I I
I I I

Representing objects

* An object: a square with object type,
optionally preceded by object name and colon

— write object's name if it clarifies the diagram
— object's "life line" represented by dashed vert. line

ous . of
Ao oot gss

rech
b\ec .
> Q_Ob e grkno¥
Smith:Patient Patient Smith

%

ACYIVE
doyec”

et e\

(=

Name syntax: <objectname>:<classname>

Messages between objects

* message (method call): horizontal arrow to other object
— write message name and arguments above arrow

a0
oM@ ¢

‘Hospital

Admit (patientID, roomType)

>

Different types of messages

* Type of arrow indicates types of messages
— dashed arrow back indicates return

— different arrowheads for normal / concurrent
(asynchronous) methods

Messages
:Controller
= -Controller ppoce' dure co\l
T —_
£ cO“Wo\ Ke-—-——-
\at flow ©
£ <---- W

xurn

g
3
g

Lifetime of objects

e creation: arrow with 'new'
written above it

— an object created after the |
start of the scenario appears o | acun ‘
lower than the others

new a Dishase
Stmemeni

ﬂﬂﬂﬂﬂﬂ
ANeCLIlG |

* deletion: an X at bottom of ‘_ T
object's lifeline

dubetion
from cthkar
abjest

etract resulns
I

— Java doesn't explicitly delete T
objects; they fall out of scope X
and are garbage collected r

palfF-daletion

Indicating method calls

* activation: thick box over object's life line

— Either: that object is running its code or it is on
the stack waiting for another object's method

— nest to indicate self-calls and callbacks

‘Controller Activation -

—_— |

Nesting 1
< ————— . | Q .
i : 0-\- \O“

Selection and loops

* frame: box around part of a sequence diagram to indicate selection or loop

— if -> (opt) [condition]
— 1f/else ->(alt) [condition], separated by horizontal dashed line
— loop -> (loop) [condition or items to loop over]
ful ragular :
O I‘_‘Iﬂfml-.lm:x D;:gﬁiumr Mouinge
|:|i.'.p.'|h-.h. | | | |
7] | | |
losp & ihar aoch lind S| | | |
- ||
operator |3 an) [alise > $10000]) | | ead
dispaich - | | |
1 | |
------------ HIESRERESS| FREST SEEIE (R |
s | | |
dizpatch | |
gusarel | U |
— " |
opt) [needsConlirmation] | condirm | |
| | 1
| | |
| | |

Linking sequence diagrams

If one sequence diagram is too large or refers to another
diagram:

— an unfinished arrow and comment

— a "ref" frame that names the other diagram

ul l-l- L

\ \ \

\ \ \

} 1 l e Dhipgram 2
\ \ \

. Customer Info . ref) |

[| |

| | ‘ NI RR|

| | | ;

| . Verify customer credit| barix) I

\ \ \ —

\ \ \

\ Approved? \ \ The Do dorhwi
k= | \ i —

T~ ol h

| ‘ ‘ Diagram | j

\ I I

\ \ \

\ \ \

‘ \ \ b — — — —
\ \ \

\ \ \

\ \ \ o oo e iy

\ \ \ | "

Example sequence diagram

sd Example J

StoreFront art Inventory

I I

| |

| |

[[

loop /| Addltem |
|

Reserveltem

-

Checkout

1
ProcessOrder

]

ConfirmOrder

T N

PlaceltemInOrder

Forms of system control
 What can you say about the control flow of

each of the following systems?

— |s it centralized?

gl

— Is it distributed?

g

gl

raloulaiefrioa
—=— geiFricajquantty: numben

Ordat. | | ehivdelse | |0 dFisde ok vk
: i i calgulatePrics
qeiProdod | T — -
- -
Pl
,,,,,, Pk,
AT AT
sePronglistaly | M
-
(i |
T
g

[b [.
i

v

a0 Oirder Line aProduci

-

| getiecauniadalis (an Cegar)

gaiBasevalus

o oo n o il

S L

RGBT

Why sequence diagrams?
Why not just code it?

a good sequence diagram is still a bit above
the level of the real code (not all code is
drawn on diagram)

sequence diagrams are language-agnostic (can
be implemented in many different languages

non-coders can do sequence diagrams
easier to do sequence diagrams as a team

can see many objects/classes at a time on
same page (visual bandwidth)

Sequence diagram exercise:
Poker use case, Start New Game Round

The scenario begins when the player chooses to start a new
round in the Ul. The Ul asks whether any new players want to
join the round; if so, the new players are added using the Ul.

All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies an ante bet of the
proper amount. Next each player is dealt a hand of two cards
from the deck in a round-robin fashion; one card to each player,
then the second card.

If the player left of the dealer doesn't have enough money to
ante, he/she is removed from the game, and the next player
supplies the ante. If that player also cannot afford the ante, this
cycle continues until such a player is found or all players are
removed.

r

r. Pla

newPla

Poker sequence diagram

r

r Pl

leftmostPla

]

[=]

:Player

* [for each player]

addCards

emptyHand

fwhile ief player cannot ante anid playera are remaining]

e Ly i) e R P i)

are

N
I
I
(]
[}
1
i
I
(]
L}
i

il fplirpard wrk remaring

E

T

SRR eyt o B Fhd AT R I T T AL PPUSUA RS

== Wi @il peaves MAcE|

aCand

AR o

PalCard

L)

T
A
:

:
5|

addPlayers

newGame

I newPlayers

Sequence diagram question:
poker use case, Betting Round

 Why is it hard to diagram this case as a sequence diagram?

The scenario begins after the Start New Round case has
completed. The Ul asks the first player for a bet. That player
chooses to either bet a given amount, or check (no bet).

The next player is asked what to do. If the prior player placed a
bet, the next player must either match ("see") it, or match it plus
add an additional bet ("raise"), or choose not to match and exit
the round ("fold"). This continues around the table until an
entire pass is made in which all players have either matched all
other players' bets or folded.

If the next player doesn't have enough money to match the
current bet, the player is allowed to bet all of their money. But
they can then win only up to the amount they bet; the rest is a
"side pot" among the more wealthy players remaining in the
round.

Poker sequence diagram 2

‘ L Daalar cument Player Car

getCurrentPlayer]) :

current Playar

setﬁlet[amu.u nt double)

! isLegalBetiamount]

alt [legal]

[elna]

i)

loop [for each player]

Exercise: Scheduler app use case, Add
Calendar Appointment

The scenario begins when the user chooses to add a new appointment in
the Ul. The Ul notices which part of the calendar is active and pops up an
Add Appointment window for that date and time.

The user enters information about the appointment's name, location, start
and end times. The Ul will prevent the user from entering an appointment
that has invalid information, such as an empty name or negative duration.
The calendar records the new appointment in the user's list of
appointments. Any reminder selected by the user is added to the list of
reminders.

If the user already has an appointment at that time, the user is shown a
message and asked to choose an available time or replace the
appointment. If the user enters an appointment with the same name and
duration as an existing meeting, the calendar asks the user whether he/she
intended to join that meeting instead. If so, the user is added to that
meeting's list of participants.

