
What Mike is doing

in Hawai’i



• Four papers:

– Inference of field initialization

– Building and using pluggable type-checkers

– Always-available static and dynamic feedback

– Speculative program analysis

• Plus more UW papers:

– Identifying program, test, and documentation 
changes that affect behavior



Inference of field initialization

public class MyWindow extends JWindow {

private final String name;

public MyWindow(String name) {

super();

this.name = name;

…

}

…

}

Accuracy >98% (by far the world’s best)

Never null, yet 

NullPeinterException

when accessing 

this.name



Pluggable type-checking 

Problem:  Even if the type-checker succeeds,
your program can still crash

Example:  null pointer exception

Idea:  create optional, stronger type systems

Tool:  the Checker Framework

Results:

• Finds lots of real bugs

• Little annotation overhead

• Easy to get started using

• Easy to build new type systems



Complementary verification technologies

Static type-checking is useful

not always the most important goal

Dynamic testing is useful

not always the most important goal

Idea:  let the programmer choose the best approach,

at any moment during development

– Fast, flexible development, as with dynamic types

– Reliable, maintainable applications, as with static types



Program analysis

Informs you about your program

• Type-checking

• Testing

• Profiling

• Bug-finding

• Verification

• Collaboration

Idea:  run program analysis on
programs you have not yet written

todaypast future

Program 

analysis

Program analysis 

+ version control
??


