
Steve Geluso /geluso@(cs|uw)/ 30 March 2011
Aryan Naraghi /aryan(@cs|90@uw)/

CSE 403 Project Proposal: Song Tagging System for the KEXP Radio Station

Vision
Radio listeners often hear stations play songs they love without knowing what song is actually playing.
We envision creating a simple application dedicated to allowing Seattle’s KEXP radio listeners to identify
and keep track of songs that they like. The application will manifest itself as a web app with an Android
companion. The web app will be fully featured: users may see what’s currently playing on the radio, tag
songs they like, manage their favorite songs, view song suggestions, and export their data to other music
services (e.g., syncing favorites as a playlist to Grooveshark). The Android app will allow users on the go
to easily tag songs that they like and access a list of their tagged songs. User data between the web app
and the mobile app will always be consistent. The data for what song is playing at a given time will be
drawn from KEXP’s website. Similarly, the suggestions feature will be based on the 10+ years of playlist
history available on KEXP’s website.

The Android app will primarily allow listeners to tag songs. When listeners hear a song that they like,
they can take out their Android phone and press a button to have the application remember the song that
is playing on KEXP at the time. This eliminates the need to memorize or write down parts of the lyrics
(a dangerous activity for drivers) in hopes of looking up the song later. The application would also work
without an Internet connection by recording the time when the button is pressed and querying the server
later to find out what song was playing at the time. This is a compelling use-case for many radio listeners
who listen to the radio while driving.

We may face competition from other developers making their own mobile apps. There is currently an
iPhone app that streams KEXP to listeners and allows them to tag their favorite songs. The iPhone app
is not coupled with a website; it does not integrate any third party music services nor does it have a song
suggestion feature. Our only direct Android competition comes from an app KEXP promised to deliver in
fall of 2010. No app was ever released. This leads us to believe that the project is dead. We want to be
the first dedicated KEXP app in the Android market, and we want our app to be better than the iPhone
app.

Software Architecture
The software will consist of three main components: a web crawler, a database and server, and the web
and mobile applications. Figure 1 is a simple overview of the system.

Figure 1. Each level of components is dependent on the levels below it.

The crawler will have two purposes: to regularly check KEXP’s website for the song that is playing and to

collect the 10+ years of playlist history that is available. The former task is accomplished by accessing an
XML file that KEXP publishes, indicating what song is being played. Figure 2 shows what this XML file
looks like. To maintain up-to-date information, this file will have to be accessed every few seconds. The
latter task will be accomplished in a one-time crawl, with the possibility of weekly crawls to add new data.

<t>

 <s>Flutter</s> <!-- song name -->

 <a>Dial ‘M’ for Monkey <!-- album name -->

 <r>Bonobo</r> <!-- artist name -->

 <l>Ninja Tune</l> <!-- record label -->

 <t>5:17AM</t> <!-- time played -->

 <ry>2003</ry> <!-- release year -->

</t>

Figure 2. A sample of what KEXP’s playlist data feed looks like.

We intend to use Django (a Python Web Framework) for our backend and the web application. Django
will tie in a database (most likely MySQL) for use with the web application and the Android app. The
Android app will submit queries to the database asking “what song was playing at this time?” As such, a
crucial role of the database and server will be accepting timestamps and returning song information. The
database will also store data that will allow us to make song suggestions.

We plan to use historical playlist data to generate music suggestions. We will employ an algorithm
that extracts N-grams from a text document. These N-grams represent what words appear near each
other within a document, indicating that they may be semantically related. We will create a document
representing the last ten years of music played on KEXP. Each song will be given a unique ID, that will
be tokenized as a word. We can generate N-grams based on the proximity of these song ID’s to find out
which songs have been played near each other. Every song will have its own N-gram and that relates
it to a set of other similar songs. This feature can be used to generate playlists (e.g., iTunes Genius,
Pandora), or to recommend a small set of similar songs, (e.g., Amazon’s “if you like this, then you might
also like these”).

We intend to serve everything on either Google App Engine or Amazon Web Services. Relying on cloud-
based services will allow us to worry less about hardware and will also make the service more scalable.

The Android app will be written in Java and will depend on the Django server for data. Information
between the server and the app will be delivered as JSON-serialized data, which will make serializing and
parsing of data easy. The phone will be able to keep a local copy of user information, such as the user’s
favorite songs. As the phone queries the server for song information the server will synchronize data from
the phone with the web application. Users will always have the same data available on both the web app
and on their phone.

Challenges and Risks
Since KEXP does not publicly advertise its data feed (the XML file depicted in Figure 2), we will be
crawling it on our own. KEXP’s robot.txt allows robots to crawl this file. We plan to abide by typical robot
rules and only issue one request every six seconds. Unfortunately, since we can only make at most one
request every six seconds, our data may not be accurate between the end of one song and the beginning
of another. To combat this, we will need to provide a mechanism allowing users to correct misidentified
songs.

It will be challenging to ensure data is consistent between the web app and phone app as user data is
distributed over these different mediums. If users are allowed to modify their data in both locations we will
need to ensure that data is not corrupted when the two parts try to synchronize with one another.

We are not sure how well the song suggestion feature will work. Pursuing this feature is risky because
it may take a lot of time to perfect, or it may not even work at all. We intend on mediating this risk by
performing some experimentation with the idea before going forward with it.

