Security Audit Checklist: Code Perspective

General tips
o Whitelist over blacklist
o Deny by default
o | east privilege principle
e Limit resource consumption (DoS)
¢ Judicious use of shell calls, eval functions

Admin strategies

Examine log files for unexpected activities

Examine database for strange entries

Check for odd user accounts, groups

Check for incorrect user rights, group memberships
Use correct config files (apache, php, mysgl) settings

Don't trust input data

e Form input, POST/GET
Command line arguments
Configuration files
Environment variables
Cookies
Input files

Validate all input data
e Server and client
o Before saving input
o Before using input
Escape printed/executed user input data
o Validate input printed in error messages
Deny by default if unsure
Use regexes to validate
Careful with user-provided file names

Error messages
o Catch exceptions
o Check result codes
e Don't display "too" helpful errors:
o Variables in scope
o Failing SQL query
o Stack trace
o Print error details to log instead of in app (filter
passwords, sensitive data)

Sensitive data

o Use encrypted external files to store passwords to DB
connections, other passwords (not hardcoded)

o Check credentials upon each load of restricted page

o Store config files outside of web-accessible directory
(-htaccess "deny from all™)

e Not stored in cookies, sessions

e Not logged in log files

Sessions
o Stealing a session id: using web app as someone else

session ID instead of in session variable
Make log-out button prominent

Expire sessions unused past ~20 min
Expire sessions on server and client

Store sensitive session information in database keyed by

Files

Use absolute paths
Set file permissions, directory permissions

o For already-existing files

o For files created by application
Throw errors when overwriting already existing files
Check file is not a symbolic link before opening
Unique/difficult to guess file names for temporary files
(symbolic link attack)
Open files with lowest level of permission needed

Ruby on Rails

Use escapeHTML() /h() to escape input in HTML
Use escape_javascript () for input within JS
functions

Use sanitize_sql() for connection,execute(),
Model.find_by sql()

Pass array or hash in conditions fragments
(:conditions => ["login = ? AND password
?", name, pass])

e Use built-in active record validations
o Use private and protected in controllers for methods that

should not be actions

Mass assignment: use attr_accessible to specify
attributes accessible for mass-assignment

Use filter_parameter_logging on sensitive
attributes so Rails logs do not store them

Use before_filter :only =>[..]instead of
rexcept =>[..]

Java/JSP

Use PreparedStatements to update databases
Don't try to do HTML-encoding yourself; use library:
o lang package in Apache Commons Project
(http://commons.apache.org/lang/)
o StringEscapeUtils: escapeXML, escapeHTML
Perform logging from a .jsp page using the global
log() function

e Use a SecurityManager when running untrusted code
e Limit publicly accessible static/global shared data
e Use encryption algorithms found in javax.crypto. *

instead of writing own/using others'

PHP

Use htmlspecialchars() to escape input in HTML
Use mysql_real_escape_string /
pg_escape_string for SQL statements

Use is_numeric(), ctype_digit(), regexes,
variable handling functions for validation

Deploy with register_globals, display_errors
off; log_errors on

Commonly disabled functions: ini_set(), exec(),
fopen(), popen(), passthru(), readfile(),
file(), shell_exec() and system()

Tools: Spike PHP Security Audit Tool, PHP Security
Scanner PhpSeclinfo



Security Audit Checklist: Attacker Perspective

General
e View source
o Trigger error messages
o May contain useful information, filenames, etc

URL discovery
e Directory traversal
o Increment/decrement numeric ids
Guess filenames
Try connecting to different ports (SSH, FTP, mail, etc)
Modify query parameters
Google hacking

Bypass client-side validation
¢ Disable/modify validating javascript
o Modify pre-set form values
o Hidden
o Radio
o Select
o Modify cookies

Injection
e HTML
o User-provided data is output unescaped
o Could be used for XSS
e SQL in username/password fields
o ; DROP TABLE foo --
o' OR 1=1 --
e SQL In URLs
o http://abc.com/index.php?id=10 AND id=11
e JavaScript/Ajax requests
¢ Anything that should be escaped but isn't

Login

Repeatedly submit login form; is there a lock-out?

Try various user names for "wrong password" feedback (gives details into login/password scheme)
See if log in locks out after N failed attempts; if there is a delay, captcha

Weak "forgot password" setup?

Check cookies when logged in; see if storing vital information

Login done over a secure channel? (man-in-the-middle)

Other
¢ DoS: look for slow/computationally intensive things to request multiple times in succession
o Check for weak or breakable forms of encryption
o Check for unsigned security certificates

Useful Tools
o Firebug
o Life HTTP Headers Firefox extension
o Useful for capturing, modifying, and re-playing AJAX requests



