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CSE 403, Winter 2010 
PHASE 2 (50 points): Software Design Specification (SDS) 

due Fri Feb 5, 11:59pm 

The SDS milestone is a set of documents about your project's design.  Your design should specify how to implement an 
object-oriented product to meet the requirements in your SRS.  Among other things, your SDS should answer the 
questions: what are your classes, what are the responsibilities of each class, and how do the classes collaborate? 

Your SDS must contain the following four (4) items: 

 

1. UML class diagram 
Submit a UML class diagram for your system in the format shown in Fowler, Chapter 3.  Your diagram should display 
all major classes, attributes (fields), methods (do not list get / set / is methods), inheritance/interface relationships, and 
associational relationships (named and directed, with multiplicity adornments). 

Your design will be evaluated on completeness as well as level of thought, attention to principles discussed in class, and 
proper UML syntax.  Follow Riel's OO design heuristics, such as: 

• use encapsulation (Heuristic 2.1) 
• keep related data and behavior in the same place (Heuristic 2.9) 
• minimize each class's public interface (Heuristic 2.3, 2.6) 
• emphasize cohesion and limit coupling (Heuristic 2.7, 2.8) 
• avoid "god classes" (Heuristic 3.2) 
• avoid insignificant or irrelevant classes (Heuristic 2.11, 3.7, 3.8) 
• model-view separation and model independence from view (Heuristic 3.5) 
• avoid irrelevant "agent" or "controller" classes (Heuristic 3.10) 

Distribute your project's functionality and allow for features to be developed in parallel as much as possible. 

 

2. UML sequence diagrams         (with optional state diagram) 
Submit two (2) UML sequence diagrams that depict your product executing two of its important use cases.  These can be 
the same use cases you wrote about in your SRS.  The sequence diagrams should follow the format of the examples from 
Fowler, Chapter 4.  Your diagram should show all participants (objects) in the sequence, all important directed messages 
between them and their return values (if any), as well as interaction frames with proper operator adornments as 
appropriate.  Use good design with decentralized control; no one class or object should do the bulk of the work. 

If your product is a web app, the sequence diagrams should show the "life" of a user's web request.  Show the request's 
path through your UI, server, and/or data layers as it interacts with each to accomplish the task.  If your app is a client or 
mobile app, show the entire path through from the user's initial action through the UI down to any lower-level code such 
as data structures and objects that model underlying system state and behavior. 

Accompanying one or both of the sequence diagrams should be a brief pseudo-code description of the same algorithm or 
process, similar to Fowler's Figure 4.4. 

 

As an alternative, if you want to turn in one (1) UML state diagram in place of one of your sequence diagrams, this is 
okay.  The state diagram should follow proper state diagram syntax as described in Fowler, Chapter 10.  Your diagram 
should include: a starting pseudo-state; at least 3-4 other meaningful states, properly labeled; transitions between those 
states as appropriate, properly labeled; and a final state, properly labeled, as appropriate. 

 

(continued on next page) 
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3. Coding style guidelines 
Submit a document explaining what style conventions you plan to follow (a reference document or link with an example 
would be helpful), and how you plan to enforce a consistent coding style between group members.  Describe any tools 
you plan to use to enforce these conventions, and/or any methodologies your group members plan to use to enforce them.  
Plan at least some time to perform code reviews, where one developer's work will be looked over by one or more others.  
Describe how you will provide evidence of these reviews to the grader.  Will you take review notes?  Will you use a tool 
to annotate the reviewed code?  Etc. 

See the course web site's Links page for links to some useful tools for style checking that you may want to list here. 

 

4. Presentation 
Submit a set of 4-8 slides in PDF, PPT, or ODP format of a brief presentation summarizing your project and the work 
you've done on it so far.  You should talk about the overall project idea, its major features as outlined in your SRS, any 
changes that have been made to it since the initial project proposal, some high-level aspects of its design including at least 
one of your design diagrams, your languages and team roles, and so on. Each group will be given approximately 7-8 
minutes.    At least 3 group members must participate in the presentation. 

Use at least two diagrams in your slides to receive full credit; these can be taken directly from your other documents. 

 

Submission and Grading: 
Submit your SDS documents online through the link provided on the course web site.  You may submit documents on 
paper in lecture as well if you like, but this means you would have to have those documents finished by 11:30am on the 
due date in order to hand them in on time. 

Part of your grade will come from the plausibility, thoughtfulness, and level of detail of your work.  For example, if you 
are listing classes in your class diagram, take care not to forget important classes that would reasonably needed to solve 
the task you are working on.  Do not forget to include classes for all aspects of your system, such as user interface, data 
modeling, database interaction, any "helper" classes or utility code, etc.  In the past, some groups have focused too much 
on user interface classes and have done a poor job capturing the details of the "model" of your system, the classes that 
actually represent the important data and behavior necessary for the task. 

List the contents of each class in detail, including a comprehensive set of fields, methods, and constructors.  (Do not list 
"getter" or "setter" methods that simply provide clients access to data of the object.)  Part of your grade comes from 
following proper UML syntax, including syntax for classes, interfaces, attributes, methods, access modifiers, parameters, 
return values, and types.  Also list any and all relationships that occur between classes.  Your relationships should have 
proper syntax for all elements mentioned in the reading, such as direction, multiplicity, and a label explaining the 
relationship. 

In UML sequence diagrams, we want to see that you have listed a reasonable set of steps and calls to achieve a concrete 
goal described in your use cases from your SRS.  Take care not to omit important steps or details.  Make sure that the state 
of the system at the end of the path through the diagram matches the expectations from the use case to which it relates.  
Follow proper sequence diagram syntax for objects, interaction frame bars, messages between objects, and parameters.  
Choose a flow of control that is reasonable for your type of project and the goal being achieved in the scenario.  Ideally no 
one class or object should do too large a share of the work to complete the scenario. 

A small part of your grade comes from the looks or aesthetics of your documents.  They do not need to be beautiful or 
excessively formatted, but your customers need to be able to read them and extract information from them.  This means 
they should be clearly written, with proper spelling and grammar, clear wording, and drawn and formatted with a enough 
organization to present your ideas clearly to the reader. 

Remember that part of your grade comes from having a meaningful in-person interaction with your customer before the 
phase is due to show your progress, ask questions, get feedback, and generally make sure you are on the right track. 


