
1/12/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

Shoes Must

Be Worn

Dogs Must

Be Carried

In groups of 2-3 for two minutes: various (mis)interpretations of these

signs at the foot of an escalator. Well?

• Must I carry a dog?

• What about the shoes I just bought that are still in my

shopping bag?

• Do dogs have to wear shoes?

• What does it mean to wear shoes?

• What are shoes?

• What are dogs?

CSE403 Wi09 2

CSE403 Wi09 3

“dog” (noun)

• OED has 15 definitions, Webster’s 11

– a highly variable domestic mammal closely related

to the common wolf

– a worthless person

– any of various usu. simple mechanical devices for

holding, gripping, or fastening that consist of a

spike, rod, or bar

– FEET

– an investment ... not worth its price

– an unattractive girl or woman

CSE403 Wi09 4

“shoe” (noun, Webster’s)

• Six definitions including

– an outer covering for the human foot usu. made of
leather with a thick or stiff sole and an attached
heel

– another's place, function, or viewpoint

– a device that retards, stops, or controls the motion
of an object

– a device (as a clip or track) on a camera that
permits attachment of accessory items

– a dealing box designed to hold several decks of
playing cards

CSE403 Wi09 5

How about formalizing?

x(OnEscalator(x)

y(PairOfShoes(y)

IsWearing(x,y))

x((OnEscalator(x)

IsDog(x))

IsCarried(x)

• Why do the

formalizations say

“dogs are carried” and

“shoes are worn” while

the signs say “must

be”?

– The formalizations are in

indicative mood

– The signs are in optative

mood

Formalization: quick aside

• We will return to formalization later on, primarily with

respect to precise definitions of program

specifications

• i,j | 0 i,j N i < j A[i] A[j]

• top(push(S,e) = e

• But for requirements, it’s far beyond the scope of the

course (and perhaps, indeed, to some degree

beyond the scope of formalization)

• Michael Jackson: “It is not too much to say that in

dealing with the physical world formal reasoning can

show the presence of errors, but not their absence.”

CSE403 Wi09 6

1/12/2009

2

Optative vs. indicative mood

• Indicative: describes how things in the world are

regardless of the behavior of the system

– “Each seat is located in one and only one theater.”

• Optative: describes what you want the system to

achieve

– “Better seats should be allocated before worse

seats at the same price.”

CSE403 Wi09 7

Principle of uniform mood

• Indicative and optative properties should be entirely

separated in a document

– Reduces confusion of both the authors and the

readers

– Increases chances of finding problems

• If the software works right, both sets of properties will

hold as facts

CSE403 Wi09 8

CSE403 Wi09 9

“Will” and “Shall”

• Some government groups write requirements with

specified meanings for “will” and “shall” and “may”

and such

– “shall” is a requirement

– “may” is an optional requirement

– “will” describes something not under control of the

system

• Generally unclear

– Related to mood mixing

Structured natural language

• I

– I.A

• I.A.ii

– I.A.ii.3

» I.A.ii.3.q

• Although not ideal, it is almost always better than

unstructured natural language

– Unless the structure is used as an excuse to avoid

content

• You will probably use something in this general style

CSE403 Wi09 10

“what vs. how”: it’s relative

• “One person’s what is another person’s how.”

– “One person’s constant is another person’s

variable.” [Perlis]

• Parsing is the what, a stack is the how

• A stack is the what, an array or a linked list is the how

• A linked list is the what, a doubly linked list is the how

CSE403 Wi09 11

The machine and the world

Books, Authors,

Titles, etc.

Records,

databases,

pointers, etc.

The World The Machine

CSE403 Wi09 12

• Michael Jackson suggests a more fundamental distinction

between requirements and program

– The requirements are in the application domain

– The program defines the machine that has an effect in

the application domain

– Ex: Imagine a database system dealing with books

1/12/2009

3

Not a perfect mapping

• There are things in

the world not

represented by a

given machine

• Examples might be

– Book sequels or

trilogies

– Pseudonyms

– Anonymous books

• There are things in

the machine that

don’t represent

anything in the world

• Examples might be

– Null pointers

– Deleting a record

– Back pointers

CSE403 Wi09 13

Use cases: a very quick preview

• A use case is a description of an example behavior of

the system as situated in the world

– Jane has a meeting at 10AM; when Jim tries to

schedule another meeting for her at 10AM, he is

notified about the conflict

• Similar to CRC (class responsibility collaborator) and

eXtreme programming “stories”

CSE403 Wi09 14

Alert!

• I’ll give some fairly specific details about what use cases are

• But there is no reason to follow the details precisely: they are

just guidelines (you needn’t even use them)

• Cockburn distinguishes

– Brief use case: a few sentences that can be easily inserted

in a spreadsheet cell, allowing other columns in the

spreadsheet to record priority, etc.

– Casual use case: a few paragraphs of text that summarizes

the use case.

– Fully dressed use case: a formal document with well-

defined fields

CSE403 Wi09 15 CSE403 Wi09 16

Use cases and actors

• Use cases represent specific flows of events in the

system

• Use cases are initiated by actors and describe the

flow of events that these actors are involved in

– Anything that interacts with a use case; it could be

a human, external hardware (like a timer) or

another system

CSE403 Wi09 17

Use case description

• How and when it begins and ends

• The interactions between the use case and its actors,

including when the interaction occurs and what is

exchanged

• How and when the use case will need data from or

store data to the system

• How and when concepts of the problem domain are

handled

CSE403 Wi09 18

Jacobson example: recycling

Th e cou rs e of even ts s ta r ts wh en th e cu s tom er p res s es th e

“Sta r t -Bu tton ” on th e cu s tom er pa n el. Th e pa n el’s bu ilt -in

s en s ors a re th ereby a ct iva ted .

Th e cu s tom er ca n n ow retu rn depos it item s via th e

cu s tom er pa n el. Th e s en s ors in form th e s ys tem th a t a n

ob ject h a s been in s er ted , th ey a ls o m ea s u re th e depos it item

a n d retu rn th e res u lt to th e s ys tem .

Th e s ys tem u s es th e m ea s u rem en t res u lt to

determ in e th e type of depos it item : ca n , bot t le or cra te.

Th e da y tota l for th e received depos it item type is

in crem en ted a s is th e n u m ber of retu rn ed depos it item s of

th e cu rren t type th a t th is cu s tom er h a s retu rn ed ...

1/12/2009

4

CSE403 Wi09 19

Use cases vs. scenarios

• Even though Jacobson invented use cases, I don’t

like this last example as a sample use case

• The reason is that it’s really pretty long

• I think of this as more of a scenario, which strings

together a set of use cases

• But the key point is fine: describe how the system

behaves with respect to the users

CSE403 Wi09 20

An apparent aside

• In the process of defining a bunch of use cases, you

will develop a set of entities in your system

– Some of these are actors

– Some of these are parts of your system

• Remember, we’re still not talking about

implementation, but about requirements

• Collectively, these entities form something usually

called your data dictionary

CSE403 Wi09 21

Data dictionary

• Basically, a list of

the entities with

descriptions of what

they are

• Account: a single account in a

bank against which transactions

can be applied. A customer can

hold more than one account.

• Customer: the holder of one or

more accounts in a bank. A

customer can consist of one or

more persons or corporations.

The same person holding an

account at a different bank is

considered a different customer.

• Transaction: a single integral

request for operations on the

accounts of a single customer...

Due to Jacobson

Designations vs. definitions [M. Jackson]

• Designations are the atomic phenomena

– e.g., genetic mother

• Definitions define terms using designations and other

definitions

– e.g., genetic child of

• Refutable descriptions can in principle be disproven

– m,xMother(m,x)Mother(x,m)

– Can’t do this with definitions

• So, the data dictionary should rather include

designations

CSE403 Wi09 22

CSE403 Wi09 23

How are the entities related?

• The sample ATM definitions showed some

relationships among the entities

– “A customer can hold more than one account”

• There are many such relationships among the

entities in a system

• These are often captured in a diagram usually called

an object model

CSE403 Wi09 24

Object models

• There are many “languages” for defining object

models

– All object-oriented modeling techniques have such

a language (OMT, UML, Booch, etc.)

• But the heart of these is basically Chen’s entity-

relationship diagrams (ERDs)

• Basically, boxes represent entities and connectors

represent relationships

– Logic can be used too, but isn’t common

1/12/2009

5

Trivial example

name

Line

name

Point
Intersects

2+

• Each of the two entities has

a single attribute

– This is similar to an instance

variable

• There is a relationship (or

association) named

Intersects between the

entities

– This reads “2 or more Lines

intersect in 0 or more

Points”

– Different notations do this in

different ways

– Make up your own if you

need!

CSE403 Wi09 25

Note: OMT is perhaps the simplest of

these models. There are lots of web

pages about such models

Aggregation

Microcomputer

Monitor
System

box
Mouse Keyboard

1+

Chassis CPU RAM Fan

CSE403 Wi09 26

• Aggregation represents an is-part-of relationship
Aggregation

CSE403 Wi09 27

Whence inheritance?

• OMT and other notations indeed support the

representation of the inheritance relationship

• However, it’s quite unusual for a good requirements

object model to include inheritance relationships

– Why is this?

– Ones’ design documents might do so, however

CSE403 Wi09 28

Another Example: buy a product
http://ontolog.cim3.net/cgi-bin/wiki.pl?UseCasesSimpleTextExample

1. Customer browses through catalog and selects items to buy

2. Customer goes to check out

3. Customer fills in shipping information

4. System presents full pricing information, including shipping

5. Customer fills in credit card information

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirming email to customer

• Alternative: Authorization Failure

– At step 6, system fails to authorize credit purchase

– Allow customer to re-enter credit card information and re-try

• Alternative: Regular Customer

– 3a. System displays current shipping information, pricing information, and

last four digits of credit card information

– 3b. Customer may accept or override these defaults

– Return to primary scenario at step 6

Another example: ATM
http://courses.knox.edu/cs292/ATMExample/UseCases.html

CSE403 Wi09 29 CSE403 Wi09 30

Recap I

• Use use cases to define instances of the behavior of

the system

– Beware: it’s very hard to show completeness of

your large collection of use cases

– Scenarios are useful because they represent

larger actions that users might perform

1/12/2009

6

CSE403 Wi09 31

Recap II

• A data dictionary captures the entities and actors in a

system, quite precisely

• An object model defines the relationships among

those entities

• Together, these three elements define the basic

requirements of a system: what’s there, what the stuff

is, and how it gets used

Questions?

CSE403 Wi09 32

