
1/16/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

https://trcs.wikispaces.com/

Creative Commons Attribution Share-Alike

Non-Commercial 2.5 License

Today

• Some requirements wrap-up (mostly from guess

who?)

– Forms of denial

– Relation to specifications (note – there are many

uses of the term ―specification‖)

– UML-ish diagrams

• Towards software architecture and design…

CSE403 Wi09 2

Denial by…

• …prior knowledge

• …hacking

• …abstraction

• …vagueness

CSE403 Wi09 3

Denial by prior knowledge

• Don’t need requirements – they are clear and all we

need to do is build it

• Specialized and standardized engineering

– Most engineering is specialized, requiring some

expertise (in stresses, in fluid flow, in computing at

web-scale, in proteomics, etc.)

– Some engineering is standardized as well:

compare car design (standardized) to bridge

design (non-standardized)

• Denial is dangerous unless a domain is both

specialized and standardized

CSE403 Wi09 4

Denial by hacking

• Not bad hacking, but rather an interest in the

computer itself more than in what the effect of the

computer is

• Nothing wrong with this interest, unless it

compromises the ability to create useful machines

• Applications can be more boring

• ―I came into this job to work with computers, not to be

an amateur stockbroker‖ –Member of a failed

development team

CSE403 Wi09 5

Denial by abstraction

• Intentionally choosing to forget what the symbols

represent

• Arguably, denial by hacking in the mathematical

realm

• Abstraction is good – surely one of the most powerful

tools in software engineering

• But ―too much abstraction blinds you to the nature of

many problems‖

CSE403 Wi09 6

1/16/2009

2

Denial by vagueness

• ―Describe the Machine, but imply that you’re

describing the World.‖

• No designations, avoid saying explicitly what is

described, …

CSE403 Wi09 7

Books, Authors,

Titles, etc.

Records,

databases,

pointers, etc.

The World The Machine

CSE403 Wi09 8

CSE403 Wi09 9 CSE403 Wi09 10

CSE403 Wi09 11

UML-ish models/diagrams

• Object models

• …fill in…

• Used, and perhaps useful, at multiple levels of

software engineering – requirements, design,

implementation

– Clarity about the level of use is as important as

clarity of the models

CSE403 Wi09 12

1/16/2009

3

Towards software design

• ..via architecture (and perhaps back to architecture

later on)

CSE403 Wi09 13

System architecture

System architecting, the planning and building of

structures is as old as human societies and as modern

as planning the exploration of the solar system. It arose

in response to problems too complex to be solved by

pre-established rules and procedures. It introduces

heuristics as design guidelines and focuses on the art

— in contrast with the science and mathematics — of

conceiving and certifying systems of complexity too

great to analyze. —E. Rechtin

CSE403 Wi09 14

Brooks [MMM after 20 years]

Today I am more convinced than ever. Conceptual

integrity is central to product quality. Having a system

architect is the most important step toward conceptual

integrity.

CSE403 Wi09 15

Some Spinrad heuristics [Rechtin/Maier]

• ―In architecting a new program, all the serious

mistakes are made in the first day‖

• ―The test of a good architecture is that it will last. The

sound architecture is an enduring pattern‖

CSE403 Wi09 16

We’re less grandiose

• This description of Rechtin’s is fine and accurate

– It’s largely the basis for the field of systems

engineering

• Indeed, lots of these ideas are applicable to systems

with substantial software components

• But a less broad notion of system architecture is fine

for this course

CSE403 Wi09 17

System architecture

• The really basic, essentially unchangeable structures

of the system

• They can arise in at least two ways

– These structures can be defined entirely

beforehand: they are part of the customer’s

definition of the project

– In other cases, they are the first, high-level

choices you make

CSE403 Wi09 18

1/16/2009

4

Ex: Customer imposed

• Build this system in Unix using X-windows

– This sets the basic user interface engine and

structure (client-server)

– It also sets the basic internal structures and

computations

• Unix processes, byte streams, etc.

• Why might this kind of decision be imposed?

CSE403 Wi09 19

X Windows requirements [Lee]

• The system should be implementable on a variety of displays.

• Applications must be device independent.

• The system must be network transparent.

• The system must support multiple applications concurrently.

• The system should be capable of supporting many different

application and management interfaces

• The system must support overlapping windows, including output

to partially obscured windows.

• The system should support a hierarchy of resizable windows; an

application should be able to use many windows at once.

• The system should provide high-performance, high-quality

support for text, 2-D synthetic graphics, and imaging.

CSE403 Wi09 20

Visio (pre-purchase by Microsoft)

• Single platform (Windows) and first on the block with

every new Microsoft-based development approach

– ―Visio has employed the latest Windows-based

technology in every version of its software

products.‖

– OLE, COM, DCOM, etc.

• This imposes a system architecture on every Visio

product and on every application built on Visio

CSE403 Wi09 21

Embedded systems

• Systems containing a combination of hardware and

software must often make significant system

architecture decisions

– Airplanes are a great example: fly-by-wire is

heavily motivated by the benefits of reducing

hydraulics, which are heavier than coaxial cables

(reducing fuel consumption)

• There is an area called HW/SW co-design that (in

part) addresses this issue in computing

CSE403 Wi09 22

CSE403 Wi09 23

Developers’ choice

• Sometimes the system architecture is selected by the

developers (as opposed to imposed by the

customers)

• The consequences of what architecture is selected is

equally important

• It’s ―only‖ a question of who chooses

CSE403 Wi09 24

Benefits and costs

• A system architecture gives you a structure, along

with some specific benefits (in principle, at least)

• And presumably you get some costs if you choose to

go outside the architecture

1/16/2009

5

CSE403 Wi09 25

Isn’t it just design?

• No!

• It’s at a completely different level (at least)

– Surely not whether to use arrays or a linked list to

represent a sequence

– Not even how to design a symbol table

• It’s high-level, very fundamental structural decisions

CSE403 Wi09 26

Examples

• A few architectures in a few domains

• The point is to show how high-level architectural

decisions are so fundamental (―first day‖ decisions)

– Not deep insights into those domains

• Ex: in your project, there is a major difference

between a web-based and a non-web-based

interface, which has consequences from the

requirements to design to coding to testing to

maintenance

CSE403 Wi09 27

Network architectures

• Circuit-switched

– The telephone system

• Packet-switched

– The Internet

• Rings

– IBM SNA

• ...

CSE403 Wi09 28

Operating systems

• Layered

architectures

– THE, Venus,

CP/M, etc.

• Benefits?

Costs?

• This is not at the

same level as

design: i.e.,

these aren’t

abstract data

types!

THE

• Level 5: User Programs

• Level 4: Buffering for I/O

devices

• Level 3: Operator Console

Device Driver

• Level 2: Memory Management

• Level 1: CPU Scheduling

• Level 0: Hardware

CSE403 Wi09 29

Operating systems

• Virtual machines

– Build a kernel that

provides a set of

virtual machines,

each of which is

(almost) identical to

the bare machine

– Share the resources

of the bare machine

(CPU, disks, etc.)

• Virtual card readers

• Virtual printers

• Minidisks

• Etc.

CSE403 Wi09 30

How to select an architecture?

• So, what do we do in our project? There is no magic

– Rechtin/Maier have about 200 heuristics!

• Part of it is developing as deep an understanding of

the underlying technologies as you can

– Risk: how much time can you spend?

• Then you have to in some sense ―proof‖ your

requirements against each choice

1/16/2009

6

CSE403 Wi09 31

Which requirements?

• You should not consider only your behavioral

requirements (what happens)

• But also issues such as, ―How will we be able to

deliver our minimal subset only in the face of time

pressure?‖

CSE403 Wi09 32

Risk-proofing

• You can never eliminate risks

• But you may find in choosing an architecture that

you’ll have some particular concerns

– You may be able to build a quick-and-dirty

prototype to address these concerns

CSE403 Wi09 33

Finally

• If you’re worrying about data structures, data

representations, algorithms, etc., then you’re almost

surely not thinking about your architecture

• First things first

Questions?

CSE403 Wi09 34

