2/13/2009

[kwol-i-tee] » 1250-1300; ME qualite < OF < L qualitas
[uh-shoor-uhns, -shur-] e 1325-75; ME ass(e)ura(u)nce < MF ass(e)urance
dictionary.com

CSE403: Software Engineering

David Notkin
Winter 2009

Upcoming lecture plan

MONDAY WEDNESDAY FRIDAY
Testing Design reviews,
Midterm review
Presidents’ Day Midterm SDS presentations (2)

SDS presentations (2) Guest lecture TBA

UW CSE 403 2

Terminology

A failure occurs when a program doesn't satisfy its
specification

« A fault occurs when a program'’s internal state is
inconsistent with what is expected (usually an
informal notion)

» Adefect is the code that leads to a fault (and perhaps
to a failure)

« An error is the mistake the programmer made in
creating the defect

UW CSE 403 3

More terminology

+ Atest case is a specific set of data that exercises the
program

» Atest suite is a set of test cases

+ Old terminology

— A test case (suite) fails if it demonstrates a
problem

* New terminology

— A test case (suite) succeeds if it demonstrates a
problem

UW CSE 403 4

Root cause analysis

« Tries to track a failure to an error
Identifying errors is important because it can
— help identify and remove other related defects

— help a programmer (and perhaps a team) avoid
making the same or a similar error again

UW CSE 403 5

Discreteness

* It's important to remember that testing software is
different from testing physical widgets

— In general, physical widgets can be analyzed in
terms of continuous mathematics

— Software is based on discrete mathematics
* Why does this matter?

* In continuous math, a small change in an input
corresponds to a small change in the output

— This allows safety factors to be built in

+ In discrete math, a small change in an input can
correspond to a huge change in the output

UW CSE 403 6

2/13/2009

Characteristic tests

Program

» A goal of picking a Beho,
test case is that it be
characteristic of a
class of other tests

* Thatis, one case
builds confidence in

: %{ @
how other cases will Conms
perform
UW CSE 403 7

More characteristic tests

» The overall objective
is to cover as much
of the behavior
space as possible
— It's generally infinite

* In general, it's useful
to distinguish the
notions of common
vs. unusual cases
for testing

UW CSE 403 8

Black box testing

< Treat the unit (program, procedure, etc.) as a black
box

— You can hypothesize about the way it is built, but
you can't see it

» Depend on a specification, formal or informal, for
determining whether it behaves properly

* How to pick cases that cover the space of behaviors
for the unit?

— Use heuristics

UW CSE 403 9

Equivalence partitioning

+ Based on input conditions

— If input conditions are specified as an ordered
range, you have one valid class (in the range) and
two invalid classes (outside the range on each
side)

— If specified as a set, then you can be valid (in the
set) or invalid (outside the set)

— Etc.

UW CSE 403 10

Boundary values

» Problems tend to arise on the boundaries of input
domains than in the middle

« So, extending equivalence partitioning, make sure to
pick added test cases that exercise inputs near the
boundaries of valid and invalid ranges

UW CSE 403 1

Others include

+ Cause-effect graphing
» Data validation testing
» Syntax-direct testing

UW CSE 403 12

2/13/2009

White box testing

« In this approach, the tester has access to the actual
software

* They needn’t guess at the structure of the code,
since they can see it

« In this approach, the focus often shifts from how the
code behaves to what parts of the code are exercised

UW CSE 403 13

White box coverage

* In black box, the
tests are usually
intended to cover
the space of
behavior

* In white box, the
tests are usually
intended to cover
the space of parts of
the program

UW CSE 403 14

Statement coverage

* One approach is to
cover all statements

— Develop a test suite that max = X
exercises all of a

if x > y then

program'’s statements else
» What's a statement? max :=y
- max = (x > y) s
2% : b endif

UW CSE 403 15

Weakness

« Coverage may miss

some obvious issues

* In this example (due to
Ghezzi et al) a single test
(any negative number endif;
for x) covers all
statements

if x < 0 then

X 1= -X;

— Butit’s not satisfying with
respect to input condition
coverage, for example

UW CSE 403 16

Edge coverage

Another approach is

to use a control flow @

graph (CFG) ¥

representation of a

program

— Essentially, a
flowchart

» Then ensure that

the suite covers all

edges in the CFG

UW CSE 403 17

Condition coverage

+ Complex conditions can confound edge coverage
- if (p !'= NULL) and
(p->left < p->right)
* Is this a single conditional statement in the CFG?
* How are short-circuit conditionals handled?
— andthen, orelse

UW CSE 403 18

2/13/2009

Path coverage

» Edge coverage is in
some sense very
static

» Edges can be
covered without
covering paths
(sequences of
edges)

— These better model
the actual execution

UW CSE 403

if x <> 0 then
y :=5
else
z = z-X
endif
if z > 1 then
z = z/x
else
z :=0
endif

Example

%ffm mmﬁ

UW CSE 403

20

Path coverage and loops

* In general, we can’t
bound the number of
times a loop executes

* Sothere are an
unbounded number of
paths in general

UW CSE 403

Testing

* It's unsound

* It's heuristic
— Heuristic doesn’t mean undisciplined

* It's extremely useful and important

+ Good testing requires a special mindset
— “I'm going to make that sucker fail!”

» Good coding requires a special mindset
— “Nobody’s going to break my code!”

UW CSE 403

Questions?

UW CSE 403

