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CSE403: Software Engineering

David Notkin
Winter 2009

Upcoming lecture plan

MONDAY WEDNESDAY FRIDAY
Testing Design reviews,
Midterm review
Presidents’ Day Midterm SDS presentations (2)

SDS presentations (2)  Guest lecture TBA
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Terminology

A failure occurs when a program doesn't satisfy its
specification

« A fault occurs when a program'’s internal state is
inconsistent with what is expected (usually an
informal notion)

» Adefect is the code that leads to a fault (and perhaps
to a failure)

« An error is the mistake the programmer made in
creating the defect
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More terminology

+ Atest case is a specific set of data that exercises the
program

» Atest suite is a set of test cases

+ Old terminology

— A test case (suite) fails if it demonstrates a
problem

* New terminology

— A test case (suite) succeeds if it demonstrates a
problem
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Root cause analysis

« Tries to track a failure to an error
Identifying errors is important because it can
— help identify and remove other related defects

— help a programmer (and perhaps a team) avoid
making the same or a similar error again
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Discreteness

* It's important to remember that testing software is
different from testing physical widgets

— In general, physical widgets can be analyzed in
terms of continuous mathematics

— Software is based on discrete mathematics
* Why does this matter?

* In continuous math, a small change in an input
corresponds to a small change in the output

— This allows safety factors to be built in

+ In discrete math, a small change in an input can
correspond to a huge change in the output
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Characteristic tests

Program

» A goal of picking a Beho,
test case is that it be
characteristic of a
class of other tests

* Thatis, one case
builds confidence in

: %{ @
how other cases will Conms
perform
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More characteristic tests

» The overall objective
is to cover as much
of the behavior
space as possible
— It's generally infinite

* In general, it's useful
to distinguish the
notions of common
vs. unusual cases
for testing
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Black box testing

< Treat the unit (program, procedure, etc.) as a black
box

— You can hypothesize about the way it is built, but
you can't see it

» Depend on a specification, formal or informal, for
determining whether it behaves properly

* How to pick cases that cover the space of behaviors
for the unit?

— Use heuristics
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Equivalence partitioning

+ Based on input conditions

— If input conditions are specified as an ordered
range, you have one valid class (in the range) and
two invalid classes (outside the range on each
side)

— If specified as a set, then you can be valid (in the
set) or invalid (outside the set)

— Etc.
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Boundary values

» Problems tend to arise on the boundaries of input
domains than in the middle

« So, extending equivalence partitioning, make sure to
pick added test cases that exercise inputs near the
boundaries of valid and invalid ranges
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Others include

+ Cause-effect graphing
» Data validation testing
» Syntax-direct testing
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White box testing

« In this approach, the tester has access to the actual
software

* They needn’t guess at the structure of the code,
since they can see it

« In this approach, the focus often shifts from how the
code behaves to what parts of the code are exercised
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White box coverage

* In black box, the
tests are usually
intended to cover
the space of
behavior

* In white box, the
tests are usually
intended to cover
the space of parts of
the program
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Statement coverage

* One approach is to
cover all statements

— Develop a test suite that max = X
exercises all of a

if x > y then

program'’s statements else
» What's a statement? max :=y
- max = (x > y) s
2% : b endif
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Weakness

« Coverage may miss

some obvious issues

* In this example (due to
Ghezzi et al) a single test
(any negative number endif;
for x) covers all
statements

if x < 0 then

X 1= -X;

— Butit’s not satisfying with
respect to input condition
coverage, for example
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Edge coverage

Another approach is

to use a control flow @

graph (CFG) ¥

representation of a

program

— Essentially, a
flowchart

» Then ensure that

the suite covers all

edges in the CFG
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Condition coverage

+ Complex conditions can confound edge coverage
- if (p !'= NULL) and
(p->left < p->right)
* Is this a single conditional statement in the CFG?
* How are short-circuit conditionals handled?
— andthen, orelse
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Path coverage

» Edge coverage is in
some sense very
static

» Edges can be
covered without
covering paths
(sequences of
edges)

— These better model
the actual execution
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if x <> 0 then
y :=5
else
z = z-X
endif
if z > 1 then
z = z/x
else
z :=0
endif

Example

%ffm mmﬁ

UW CSE 403

20

Path coverage and loops

* In general, we can’t
bound the number of
times a loop executes

* Sothere are an
unbounded number of
paths in general

UW CSE 403

Testing

* It's unsound

* It's heuristic
— Heuristic doesn’t mean undisciplined

* It's extremely useful and important

+ Good testing requires a special mindset
— “I'm going to make that sucker fail!”

» Good coding requires a special mindset
— “Nobody’s going to break my code!”
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Questions?
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