
2/13/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

[kwol-i-tee] 1250–1300; ME qualite < OF < L quālitās

[uh-shoor-uhns, -shur-] 1325–75; ME ass(e)ura(u)nce < MF ass(e)urance

dictionary.com

Upcoming lecture plan

MONDAY WEDNESDAY FRIDAY

Testing Design reviews, 

Midterm review

Presidents’ Day Midterm SDS presentations (2)

SDS presentations (2) Guest lecture TBA

UW CSE 403 2

UW CSE 403 3

Terminology

• A failure occurs when a program doesn't satisfy its 

specification

• A fault occurs when a program's internal state is 

inconsistent with what is expected (usually an 

informal notion)

• A defect is the code that leads to a fault (and perhaps 

to a failure)

• An error is the mistake the programmer made in 

creating the defect

UW CSE 403 4

More terminology

• A test case is a specific set of data that exercises the 

program

• A test suite is a set of test cases

• Old terminology

– A test case (suite) fails if it demonstrates a 

problem

• New terminology

– A test case (suite) succeeds if it demonstrates a 

problem

UW CSE 403 5

Root cause analysis 

• Tries to track a failure to an error

• Identifying errors is important because it can

– help identify and remove other related defects

– help a programmer (and perhaps a team) avoid 

making the same or a similar error again

UW CSE 403 6

Discreteness

• It’s important to remember that testing software is 

different from testing physical widgets

– In general, physical widgets can be analyzed in 

terms of continuous mathematics

– Software is based on discrete mathematics

• Why does this matter?

• In continuous math, a small change in an input 

corresponds to a small change in the output

– This allows safety factors to be built in

• In discrete math, a small change in an input can 

correspond to a huge change in the output



2/13/2009

2

UW CSE 403 7

Characteristic tests

• A goal of picking a 

test case is that it be 

characteristic of a 

class of other tests

• That is, one case 

builds confidence in 

how other cases will 

perform

Program

Behavior

Test

Cases

UW CSE 403 8

More characteristic tests

• The overall objective 

is to cover as much 

of the behavior 

space as possible

– It’s generally infinite

• In general, it’s useful 

to distinguish the 

notions of common 

vs. unusual cases 

for testing

Program

Behavior

Test

Cases

UW CSE 403 9

Black box testing

• Treat the unit (program, procedure, etc.) as a black 
box

– You can hypothesize about the way it is built, but 
you can’t see it

• Depend on a specification, formal or informal, for 
determining whether it behaves properly

• How to pick cases that cover the space of behaviors 
for the unit?

– Use heuristics

UW CSE 403 10

Equivalence partitioning

• Based on input conditions

– If input conditions are specified as an ordered 

range, you have one valid class (in the range) and 

two invalid classes (outside the range on each 

side)

– If specified as a set, then you can be valid (in the 

set) or invalid (outside the set)

– Etc.

UW CSE 403 11

Boundary values

• Problems tend to arise on the boundaries of input 

domains than in the middle

• So, extending equivalence partitioning, make sure to 

pick added test cases that exercise inputs near the 

boundaries of valid and invalid ranges

UW CSE 403 12

Others include

• Cause-effect graphing

• Data validation testing

• Syntax-direct testing

• …



2/13/2009

3

UW CSE 403 13

White box testing

• In this approach, the tester has access to the actual 

software

• They needn’t guess at the structure of the code, 

since they can see it

• In this approach, the focus often shifts from how the 

code behaves to what parts of the code are exercised

UW CSE 403 14

White box coverage

• In black box, the 

tests are usually 

intended to cover 

the space of 

behavior

• In white box, the 

tests are usually 

intended to cover 

the space of parts of 

the program

UW CSE 403 15

Statement coverage

• One approach is to 

cover all statements

– Develop a test suite that 

exercises all of a 

program’s statements

• What’s a statement?
– max = (x > y)

? x : b;

if x > y then

max := x

else

max :=y

endif

UW CSE 403 16

Weakness

• Coverage may miss 

some obvious issues

• In this example (due to 

Ghezzi et al.) a single test 

(any negative number 
for x) covers all 

statements

– But it’s not satisfying with 

respect to input condition 

coverage, for example

if x < 0 then

x := -x;

endif;

z := x;

UW CSE 403 17

Edge coverage

• Another approach is 

to use a control flow 

graph (CFG) 

representation of a 

program

– Essentially, a 

flowchart

• Then ensure that 

the suite covers all 

edges in the CFG

x < 0

x := -x

Yes

No

z := x

UW CSE 403 18

Condition coverage

• Complex conditions can confound edge coverage

– if (p != NULL) and

(p->left < p->right) …

• Is this a single conditional statement in the CFG?

• How are short-circuit conditionals handled?

– andthen, orelse



2/13/2009

4

UW CSE 403 19

Path coverage

• Edge coverage is in 

some sense very 

static

• Edges can be 

covered without 

covering paths 

(sequences of 

edges)

– These better model 

the actual execution

if x <> 0 then

y := 5

else

z := z-x

endif

if z > 1 then

z := z/x

else

z := 0

endif

UW CSE 403 20

Example

Yes No

Yes No

Yes No

Yes No

UW CSE 403 21

Path coverage and loops

• In general, we can’t 

bound the number of 

times a loop executes

• So there are an 

unbounded number of 

paths in general

UW CSE 403 22

Testing

• It’s unsound

• It’s heuristic

– Heuristic doesn’t mean undisciplined

• It’s extremely useful and important

• Good testing requires a special mindset

– “I’m going to make that sucker fail!”

• Good coding requires a special mindset

– “Nobody’s going to break my code!”

Questions?

UW CSE 403 23


