1/7/2009

“®

There

CSEA403: Software Engineering

David Notkin
Winter 2009

Dealing with complexity

+ Breaking large, complex .
things down to manageable
pieces is essential

* In computer science, this is
called divide and conquer

— Basedon Latin’s divide et

Step-wise refinement in

programming: input, process,

output

CSE degrees as general

education, math & science, and

computer science components
— General education as language

impera, divide and rule

— ‘[t oftenrefers to a strategy
where small power groups are
prevented from linking up and
becoming more powerful, since
itis difficult to break up existing
power structures” [Wikipedia].

* No human can fully conceive

of or understand 50MLOC in ~ * Music as melody, pitch, rhythm,
any real sense harmony, dynamics, etc.

skills, areas of knowledge, etc.
— Computer science as required,
senior electives, and free
electives
« US government as executive,
judiciary and legislative
branches

CSE403 Wi09 2

50MLOC = 50 million lines of code

50 lines/page-side
= 1M page-sides
1K page-sides/ream
= 1K reams

2 inches/ream = 2K
inches

2K inches = 167 feet
~ twice the height of
the Allen Center

CSE403 Wi09

* 5words/LOC @ 50
wpm =
50MLOC/5M min

* 5M min = 83,333 hr
=3,472 days ~ 10
years

Just to type!
No breaks and
no thinking allowed!

Addressing software complexity

What arel/is the ...?

Who does the ...?

Requirements * Requirements

Design + Design
Implementation * Implementation
Testing plan » Testing

« In some sense, two sides of the same coin

« Different approaches, representations, etc. are needed for
the artifact-oriented components

« Different skill-sets, knowledge, etc. are needed for the
human-oriented components

CSE403 Wi09 4

Software lifecycle and team structure

These are essentially ways to decompose,
respectively, the complex artifact-oriented and
human-oriented aspects of the development of large

software systems

There are a multitude of approaches to each: as
usual, no single approach to either is best in all
circumstances — but that doesn’'t mean that any
approach useful in any situation

There are weak analogies to management structures: consider
matrix structures that try to balance people responsible for

particular functions (such as engineering or sales or advertising)

with people responsible for particular products

CSE403 Wi09

Decomposition is not enough

« “Divide and conquer. Separate your concerns. Yes.
But sometimes the conquered tribes must be reunited
under the conquering ruler, and the separated
concerns must be combined to serve a single
purpose.” —M. Jackson, 1995

+ Put another way, hierarchical (or other)
decomposition isn’t the whole solution to complexity —
the composition of those sub-results into an overall
solution is crucial

+ Put yet another way, every part may work properly,
but the overall system may not — this is not a
successful outcome

CSE403 Wi09 6




1/7/2009

A concrete example

 Logical operations usually work easily in the face of
decomposition: for example, we can mechanically
build truth tables in propositional logic for non-atomic
formulae such as
((raAnbAac)vVv (anbac)v (anbAa-=ac))
« But they don’t work so easily for software in general
— (scanner A parser A type-checker symbol-
table A code-generator A optimizer)
does not a compiler make
- — (P that crashes the Mars Polar Lander)
won't give us a program that does land it safely

CSE403 Wi09 7

Another concrete example

* Meet with your team on Friday but don’'t meet again
for eight weeks — then see how your project does

* Thatis, the human tasks must be composed regularly
or else they will surely diverge from the overall goals

CSE403 Wi09 8

Reprise

« For activities

— What should we do next?

— How long should we continue to do it?
« For people

Software lifecycle: classic waterfall

“It starts at the top and

[Validaton ) it's all downhill from
Software there.” —S. Redwine

e

— Who should do it? Detailed
. . 5 The waterfall model was the first
— How can we communicate with others about it? ; ot
software lifecycle description e
— When are we done with it? [Royce 1970] _
— Not merely programming p
One develops artifacts for each
« These cannot be fully separated, of course level in succession .
Limited feedback frinosinis
Revalidatin
CSE403 Wi09 9 CSE403 Wi09 10
Comments? Lifecycle stages

CSE403 Wi09 1

 Virtually all lifecycles share
— Requirements
— Design
— Implementation
— Testing
— Maintenance

* They may be combined and intertwined in
varied ways

» There may be added constraints as well

CSE403 Wi09 12




1/7/2009

Spiral model [Boehm]: example Comments?
X e Determine objectives, Evaluste alternatives:
. A dlSCIp|Ir‘Ied o :‘!i;r:z:\;te: m — identify, resolhve risks
sequence of activities T
intended to reduce [
risk fFtos]|
« Each quadrantis a @gmmw et
different stage in e ﬁm[ Lupodor
planning and actions .. hami et {‘E?gﬂnes\ 7 ton vty
- The length of the P Serice Agagance' nextlevel product
spiral represents the
cumulative costs
* One 3/4 turn would a
waterfall model
CSE403 Wi09 13 CSE403 Wi09 14
Extreme programming: example Comments?
« Focus on Releaseplan
« continuous, months Iteration plan
customer- Wetks Acceptance @st
oriented change A Stand‘ up meeting
+ code and = N/
simplicity hours PaitiNegotiation
. rapid feedback \ | minutes ',&U/r;jtﬁist
+ Plus practices, rules ) % ’dpa.i_’ﬁf"gramm"‘g
of engagement, and es
more
n License. In short: you
CSE403 Wi09 15 CSE403 Wi09 16

Other software process models

« Agile
« lterative

« Capability Maturity Model Integration (CMMI)
« Test-driven development (TDD)
« Evolutionary development model
* Model-driven development

CSE403 Wi09

Team structures

» Tricky balance among
— progress on the project/product
— expertise and knowledge
— communication needs

* “Ateam is a set of people with complementary skills
who are committed to a common purpose,
performance goals, and approach for which they hold
themselves mutually accountable.” - Katzenbach and Smith

CSE403 Wi09 18




1/7/2009

Why teams?

« Benefits
— Attack bigger problems in a short period of time
— Utilize the collective experience of everyone
* Risks
— Personality conflicts
— Coordination issues

— Need to establish clear ownership or can have duplication of
effort

— Member can just “go along” instead of sharing potentially
great ideas

— Not taking individual responsibility/accountability because it's
agroup

— Need to be careful to have the “right” number

CSE403 Wi09 19

Communication: powerful, costly!

+ Communication requirements increase with
increasing numbers of people

» Everybody to everybody: quadratic cost

» Every attempt to communicate is a chance to mis-
communicate

* But not communicating will guarantee mis-
communicating

CSE403 Wi09 20

Surgical/Chief Programmer Team
[Baker, Mills. Brooks]

l Chief: all key decisions

Copilot: chief's assistant

Administrator: manages people, hardware, resources

Editor: edits chiefs documentation

Secretaries (2): for administrator and for editor

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief

Tester: develops and runs unit and system tests

Language lawyer: programming language expert, advises chief

CSE403 Wi09 21

Microsoft’'s team structure microsoft.com]

* Program Manager. Leads the technical side of a
product development team, managing and defining
the functional specifications and defining how the
product will work.

« Software Design Engineer. Codes and designs
new software, often collaborating as a member of a
software development team to create and build
products.

« Software Test Engineer. Tests and critiques
software to assure quality and identify potential
improvement opportunities and projects.

CSE403 Wi09 22

Toshiba Software Factory [v. matsumoto]

« Late 1970’s structure for 2,300 software developers
producing real-time industrial application software
systems (such as traffic control, factory automation,
etc.)

« Unit Workload Order Sheets (UWOS) precisely

define a software component to be built

Assigned by project management to developers

based on scope/size/skills needed

« Completed UWOS fed back into management system

« Highly measured to allow for process improvement

.

CSE403 Wi09 23

SCRUM: pigs and chickens

Product Owner represents the « Users to whom the software
customer will provide value
— Ensures that the team maintains  + Stakeholders (customers,
aproper business perspective vendors) who enable the
— Writes user stories, prioritizes project and for whom the
them, etc. project will produce the
ScrumMaster facilitates agreed-upon benefit
— Acts as a buffer between the « Managers who set up the
team and distracting influences environment for the product
— Ensures that the Scrum process development organizations
is respected
Team delivers the product « These roles are far less
- Typically 5-9 people with skills to directly connected to the
do the work (design, process
development, testing...)

CSE403 Wi09 24




1/7/2009

Results-driven structure

« Clear roles and responsibilities

— Each person knows and is accountable for their
work

« Monitor individual performance, hold people
accountable

— Whois doing what, are we getting the work done?
« Effective communication system

— Available, credible, tracking of issues, decisions
« Fact based decisions

— Focus on the facts, not the politics, personalities,

CSE403 Wi09 25

Typical SW team structures

+ A person with project management responsibilities

« A person with functional management responsibilities
» Several “developers” in a broad sense: programmers,
* testers, integrators

» A person with lead developer/architect
responsibilities

* These could be all different team members, or there

could be a large amount of overlap.
* Key: Identify and stress roles and responsibilities

CSE403 Wi09 26

Alverson suggests

* Pragmatic Programmer
— Pragmatic Teams, p. 224-230

« Aninterview with Patrick Lencioni on “The Five
Dysfunctions of a Team”

« Software Project Survival Guide
— p.103-107 on team organization

« Also see Stepp’s “team dynamics” lecture slides

CSE403 Wi09 27

Questions?

CSE403 Wi09 28



http://www.managementconsultingnews.com/interviews/lencioni_interview.php
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt

