
1/7/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

Cycle

Life

Software
There

is

no

‘I’

in

team!

Dealing with complexity

• Breaking large, complex

things down to manageable

pieces is essential

• In computer science, this is

called divide and conquer

– Based on Latin’s divide et

impera, divide and rule

– ―[I]t often refers to a strategy
where small power groups are

prevented from linking up and
becoming more powerful, since

it is difficult to break up existing
power structures‖ [Wikipedia].

• No human can fully conceive

of or understand 50MLOC in

any real sense

• Step-wise refinement in

programming: input, process,

output

• CSE degrees as general

education, math & science, and

computer science components

– General education as language

skills, areas of knowledge, etc.

– Computer science as required,
senior electives, and free

electives

• US government as executive,

judiciary and legislative

branches

• Music as melody, pitch, rhythm,

harmony, dynamics, etc.

• …
CSE403 Wi09 2

50MLOC = 50 million lines of code

• 50 lines/page-side

1M page-sides

• 1K page-sides/ream

1K reams

• 2 inches/ream 2K

inches

• 2K inches = 167 feet

twice the height of

the Allen Center

• 5 words/LOC @ 50

wpm

50MLOC/5M min

• 5M min = 83,333 hr

= 3,472 days 10

years

CSE403 Wi09 3

Just to type!

No breaks and

no thinking allowed!

Addressing software complexity

What are/is the …?

• Requirements

• Design

• Implementation

• Testing plan

• …

Who does the …?

• Requirements

• Design

• Implementation

• Testing

• …

CSE403 Wi09 4

• In some sense, two sides of the same coin

• Different approaches, representations, etc. are needed for

the artifact-oriented components

• Different skill-sets, knowledge, etc. are needed for the

human-oriented components

Software lifecycle and team structure

• These are essentially ways to decompose,

respectively, the complex artifact-oriented and

human-oriented aspects of the development of large

software systems

• There are a multitude of approaches to each: as

usual, no single approach to either is best in all

circumstances – but that doesn’t mean that any

approach useful in any situation

• There are weak analogies to management structures: consider

matrix structures that try to balance people responsible for

particular functions (such as engineering or sales or advertising)

with people responsible for particular products

CSE403 Wi09 5

Decomposition is not enough

• ―Divide and conquer. Separate your concerns. Yes.

But sometimes the conquered tribes must be reunited

under the conquering ruler, and the separated

concerns must be combined to serve a single

purpose.‖ —M. Jackson, 1995

• Put another way, hierarchical (or other)

decomposition isn’t the whole solution to complexity –

the composition of those sub-results into an overall

solution is crucial

• Put yet another way, every part may work properly,

but the overall system may not – this is not a

successful outcome

CSE403 Wi09 6

1/7/2009

2

A concrete example

• Logical operations usually work easily in the face of

decomposition: for example, we can mechanically

build truth tables in propositional logic for non-atomic

formulae such as
((a b c) (a b c) (a b c))

• But they don’t work so easily for software in general
– (scanner parser type-checker symbol-

table code-generator optimizer)

does not a compiler make

– (P that crashes the Mars Polar Lander)

won’t give us a program that does land it safely

CSE403 Wi09 7

Another concrete example

• Meet with your team on Friday but don’t meet again

for eight weeks – then see how your project does

• That is, the human tasks must be composed regularly

or else they will surely diverge from the overall goals

CSE403 Wi09 8

Reprise

• For activities

– What should we do next?

– How long should we continue to do it?

• For people

– Who should do it?

– How can we communicate with others about it?

– When are we done with it?

• These cannot be fully separated, of course

CSE403 Wi09 9

Software lifecycle: classic waterfall

• The waterfall model was the first

software lifecycle description
[Royce 1970]

– Not merely programming

• One develops artifacts for each

level in succession

• Limited feedback

CSE403 Wi09 10

Software

Requirements

Validation

System

Requirements

Validation

Preliminary

Design

Validation

Detailed

Design

Validation

Operations &

Maintenance

Revalidation

Test

Validation test

Code &

Debug

Development test

―It starts at the top and

it’s all downhill from

there.‖ S. Redwine

Comments?

CSE403 Wi09 11

Lifecycle stages

• Virtually all lifecycles share

– Requirements

– Design

– Implementation

– Testing

– Maintenance

• They may be combined and intertwined in

varied ways

• There may be added constraints as well

CSE403 Wi09 12

1/7/2009

3

Spiral model [Boehm]: example

• A disciplined

sequence of activities

intended to reduce

risk

• Each quadrant is a

different stage in

planning and actions

• The length of the

spiral represents the

cumulative costs

• One 3/4 turn would a

waterfall model

CSE403 Wi09 13

Comments?

CSE403 Wi09 14

Extreme programming: example

CSE403 Wi09 15

Planning and feed back loops in Extreme Programming (XP) w ith the time frames of the multiple loops

This file is licensed under the Creative Commons Attribution ShareAlike 3.0 License. In short: you are free to share and make derivative

works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license identical to this one.

• Focus on

• continuous,

customer-

oriented change

• code and

simplicity

• rapid feedback

• Plus practices, rules

of engagement, and

more

Comments?

CSE403 Wi09 16

Other software process models

• Agile

• Iterative

• Capability Maturity Model Integration (CMMI)

• Test-driven development (TDD)

• Evolutionary development model

• Model-driven development

• …

CSE403 Wi09 17

Team structures

• Tricky balance among

– progress on the project/product

– expertise and knowledge

– communication needs

– …

• ―A team is a set of people with complementary skills

who are committed to a common purpose,

performance goals, and approach for which they hold

themselves mutually accountable.‖ – Katzenbach and Smith

CSE403 Wi09 18

1/7/2009

4

Why teams?

• Benefits

– Attack bigger problems in a short period of time

– Utilize the collective experience of everyone

• Risks

– Personality conflicts

– Coordination issues

– Need to establish clear ownership or can have duplication of

effort

– Member can just ―go along‖ instead of sharing potentially

great ideas

– Not taking individual responsibility/accountability because it’s

a group

– Need to be careful to have the ―right‖ number

CSE403 Wi09 19

Communication: powerful, costly!

• Communication requirements increase with

increasing numbers of people

• Everybody to everybody: quadratic cost

• Every attempt to communicate is a chance to mis-

communicate

• But not communicating will guarantee mis-

communicating

CSE403 Wi09 20

Surgical/Chief Programmer Team
[Baker, Mills, Brooks]

Chief: all key decisions

Copilot: chief’s assistant

Administrator: manages people, hardware, resources

Editor: edits chief’s documentation

Secretaries (2): for administrator and for editor

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief

Tester: develops and runs unit and system tests

Language lawyer: programming language expert, advises chief

CSE403 Wi09 21

Microsoft’s team structure [microsoft.com]

• Program Manager. Leads the technical side of a

product development team, managing and defining

the functional specifications and defining how the

product will work.

• Software Design Engineer. Codes and designs

new software, often collaborating as a member of a

software development team to create and build

products.

• Software Test Engineer. Tests and critiques

software to assure quality and identify potential

improvement opportunities and projects.

CSE403 Wi09 22

Toshiba Software Factory [Y. Matsumoto]

• Late 1970’s structure for 2,300 software developers

producing real-time industrial application software

systems (such as traffic control, factory automation,

etc.)

• Unit Workload Order Sheets (UWOS) precisely

define a software component to be built

• Assigned by project management to developers

based on scope/size/skills needed

• Completed UWOS fed back into management system

• Highly measured to allow for process improvement

CSE403 Wi09 23

SCRUM: pigs and chickens

• Product Owner represents the

customer

– Ensures that the team maintains

a proper business perspective

– Writes user stories, prioritizes

them, etc.

• ScrumMaster facilitates

– Acts as a buffer between the

team and distracting influences

– Ensures that the Scrum process

is respected

• Team delivers the product

– Typically 5-9 people with skills to

do the work (design,

development, testing…)

• Users to whom the software

will provide value

• Stakeholders (customers,

vendors) who enable the

project and for whom the

project will produce the

agreed-upon benefit

• Managers who set up the

environment for the product

development organizations

• These roles are far less

directly connected to the

process

CSE403 Wi09 24

1/7/2009

5

Results-driven structure

• Clear roles and responsibilities

– Each person knows and is accountable for their

work

• Monitor individual performance, hold people

accountable

– Who is doing what, are we getting the work done?

• Effective communication system

– Available, credible, tracking of issues, decisions

• Fact based decisions

– Focus on the facts, not the politics, personalities,

…

CSE403 Wi09 25

Typical SW team structures

• A person with project management responsibilities

• A person with functional management responsibilities

• Several ―developers‖ in a broad sense: programmers,

• testers, integrators

• A person with lead developer/architect

responsibilities

• These could be all different team members, or there

could be a large amount of overlap.

• Key: Identify and stress roles and responsibilities

CSE403 Wi09 26

Alverson suggests

• Pragmatic Programmer

– Pragmatic Teams, p. 224-230

• An interview with Patrick Lencioni on ―The Five

Dysfunctions of a Team‖
– http://www.managementconsultingnews.com/interviews/lencioni_interview.php

• Software Project Survival Guide

– p.103-107 on team organization

• Also see Stepp’s ―team dynamics‖ lecture slides
– http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-

teams.ppt

CSE403 Wi09 27

Questions?

CSE403 Wi09 28

http://www.managementconsultingnews.com/interviews/lencioni_interview.php
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt

