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Dealing with complexity

+ Breaking large, complex .
things down to manageable
pieces is essential

* In computer science, this is
called divide and conquer

— Basedon Latin’s divide et

Step-wise refinement in

programming: input, process,

output

CSE degrees as general

education, math & science, and

computer science components
— General education as language

impera, divide and rule

— ‘[t oftenrefers to a strategy
where small power groups are
prevented from linking up and
becoming more powerful, since
itis difficult to break up existing
power structures” [Wikipedia].

* No human can fully conceive

of or understand 50MLOC in ~ * Music as melody, pitch, rhythm,
any real sense harmony, dynamics, etc.

skills, areas of knowledge, etc.
— Computer science as required,
senior electives, and free
electives
« US government as executive,
judiciary and legislative
branches
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50MLOC = 50 million lines of code

50 lines/page-side
= 1M page-sides
1K page-sides/ream
= 1K reams

2 inches/ream = 2K
inches

2K inches = 167 feet
~ twice the height of
the Allen Center
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* 5words/LOC @ 50
wpm =
50MLOC/5M min

* 5M min = 83,333 hr
=3,472 days ~ 10
years

Just to type!
No breaks and
no thinking allowed!

Addressing software complexity

What arel/is the ...?

Who does the ...?

Requirements * Requirements

Design + Design
Implementation * Implementation
Testing plan » Testing

« In some sense, two sides of the same coin

« Different approaches, representations, etc. are needed for
the artifact-oriented components

« Different skill-sets, knowledge, etc. are needed for the
human-oriented components
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Software lifecycle and team structure

These are essentially ways to decompose,
respectively, the complex artifact-oriented and
human-oriented aspects of the development of large

software systems

There are a multitude of approaches to each: as
usual, no single approach to either is best in all
circumstances — but that doesn’'t mean that any
approach useful in any situation

There are weak analogies to management structures: consider
matrix structures that try to balance people responsible for

particular functions (such as engineering or sales or advertising)

with people responsible for particular products
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Decomposition is not enough

« “Divide and conquer. Separate your concerns. Yes.
But sometimes the conquered tribes must be reunited
under the conquering ruler, and the separated
concerns must be combined to serve a single
purpose.” —M. Jackson, 1995

+ Put another way, hierarchical (or other)
decomposition isn’t the whole solution to complexity —
the composition of those sub-results into an overall
solution is crucial

+ Put yet another way, every part may work properly,
but the overall system may not — this is not a
successful outcome
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A concrete example

 Logical operations usually work easily in the face of
decomposition: for example, we can mechanically
build truth tables in propositional logic for non-atomic
formulae such as
((raAnbAac)vVv (anbac)v (anbAa-=ac))
« But they don’t work so easily for software in general
— (scanner A parser A type-checker symbol-
table A code-generator A optimizer)
does not a compiler make
- — (P that crashes the Mars Polar Lander)
won't give us a program that does land it safely
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Another concrete example

* Meet with your team on Friday but don’'t meet again
for eight weeks — then see how your project does

* Thatis, the human tasks must be composed regularly
or else they will surely diverge from the overall goals
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Reprise

« For activities

— What should we do next?

— How long should we continue to do it?
« For people

Software lifecycle: classic waterfall

“It starts at the top and

[Validaton ) it's all downhill from
Software there.” —S. Redwine

e

— Who should do it? Detailed
. . 5 The waterfall model was the first
— How can we communicate with others about it? ; ot
software lifecycle description e
— When are we done with it? [Royce 1970] _
— Not merely programming p
One develops artifacts for each
« These cannot be fully separated, of course level in succession .
Limited feedback frinosinis
Revalidatin
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Comments? Lifecycle stages
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 Virtually all lifecycles share
— Requirements
— Design
— Implementation
— Testing
— Maintenance

* They may be combined and intertwined in
varied ways

» There may be added constraints as well
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Spiral model [Boehm]: example Comments?
X e Determine objectives, Evaluste alternatives:
. A dlSCIp|Ir‘Ied o :‘!i;r:z:\;te: m — identify, resolhve risks
sequence of activities T
intended to reduce [
risk fFtos]|
« Each quadrantis a @gmmw et
different stage in e ﬁm[ Lupodor
planning and actions .. hami et {‘E?gﬂnes\ 7 ton vty
- The length of the P Serice Agagance' nextlevel product
spiral represents the
cumulative costs
* One 3/4 turn would a
waterfall model
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Extreme programming: example Comments?
« Focus on Releaseplan
« continuous, months Iteration plan
customer- Wetks Acceptance @st
oriented change A Stand‘ up meeting
+ code and = N/
simplicity hours PaitiNegotiation
. rapid feedback \ | minutes ',&U/r;jtﬁist
+ Plus practices, rules ) % ’dpa.i_’ﬁf"gramm"‘g
of engagement, and es
more
n License. In short: you
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Other software process models

« Agile
« lterative

« Capability Maturity Model Integration (CMMI)
« Test-driven development (TDD)
« Evolutionary development model
* Model-driven development
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Team structures

» Tricky balance among
— progress on the project/product
— expertise and knowledge
— communication needs

* “Ateam is a set of people with complementary skills
who are committed to a common purpose,
performance goals, and approach for which they hold
themselves mutually accountable.” - Katzenbach and Smith
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Why teams?

« Benefits
— Attack bigger problems in a short period of time
— Utilize the collective experience of everyone
* Risks
— Personality conflicts
— Coordination issues

— Need to establish clear ownership or can have duplication of
effort

— Member can just “go along” instead of sharing potentially
great ideas

— Not taking individual responsibility/accountability because it's
agroup

— Need to be careful to have the “right” number
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Communication: powerful, costly!

+ Communication requirements increase with
increasing numbers of people

» Everybody to everybody: quadratic cost

» Every attempt to communicate is a chance to mis-
communicate

* But not communicating will guarantee mis-
communicating
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Surgical/Chief Programmer Team
[Baker, Mills. Brooks]

l Chief: all key decisions

Copilot: chief's assistant

Administrator: manages people, hardware, resources

Editor: edits chiefs documentation

Secretaries (2): for administrator and for editor

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief

Tester: develops and runs unit and system tests

Language lawyer: programming language expert, advises chief
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Microsoft’'s team structure microsoft.com]

* Program Manager. Leads the technical side of a
product development team, managing and defining
the functional specifications and defining how the
product will work.

« Software Design Engineer. Codes and designs
new software, often collaborating as a member of a
software development team to create and build
products.

« Software Test Engineer. Tests and critiques
software to assure quality and identify potential
improvement opportunities and projects.
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Toshiba Software Factory [v. matsumoto]

« Late 1970’s structure for 2,300 software developers
producing real-time industrial application software
systems (such as traffic control, factory automation,
etc.)

« Unit Workload Order Sheets (UWOS) precisely

define a software component to be built

Assigned by project management to developers

based on scope/size/skills needed

« Completed UWOS fed back into management system

« Highly measured to allow for process improvement

.
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SCRUM: pigs and chickens

Product Owner represents the « Users to whom the software
customer will provide value
— Ensures that the team maintains  + Stakeholders (customers,
aproper business perspective vendors) who enable the
— Writes user stories, prioritizes project and for whom the
them, etc. project will produce the
ScrumMaster facilitates agreed-upon benefit
— Acts as a buffer between the « Managers who set up the
team and distracting influences environment for the product
— Ensures that the Scrum process development organizations
is respected
Team delivers the product « These roles are far less
- Typically 5-9 people with skills to directly connected to the
do the work (design, process
development, testing...)
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Results-driven structure

« Clear roles and responsibilities

— Each person knows and is accountable for their
work

« Monitor individual performance, hold people
accountable

— Whois doing what, are we getting the work done?
« Effective communication system

— Available, credible, tracking of issues, decisions
« Fact based decisions

— Focus on the facts, not the politics, personalities,
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Typical SW team structures

+ A person with project management responsibilities

« A person with functional management responsibilities
» Several “developers” in a broad sense: programmers,
* testers, integrators

» A person with lead developer/architect
responsibilities

* These could be all different team members, or there

could be a large amount of overlap.
* Key: Identify and stress roles and responsibilities
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Alverson suggests

* Pragmatic Programmer
— Pragmatic Teams, p. 224-230

« Aninterview with Patrick Lencioni on “The Five
Dysfunctions of a Team”

« Software Project Survival Guide
— p.103-107 on team organization

« Also see Stepp’s “team dynamics” lecture slides
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Questions?
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http://www.managementconsultingnews.com/interviews/lencioni_interview.php
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt
http://www.cs.washington.edu/education/courses/403/08wi/lectures/slides/lecture05-teams.ppt

