
1/21/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

Design is not just what it looks like and feels like.

Design is how it works. –Steve Jobs

Design: word association

• Shout out any phrases, tools, approaches, issues,

etc. that you think of when I say ―software design‖

CSE403 Wi09 2

CSE403 Wi09 3

Design topics

• Basic issues in design, including historical

background

• Well-understood techniques

– Information hiding, layering, event-based

techniques

– …

• Neo-modern issues

– Problems with information hiding

– Aspect-oriented design

– Architecture, patterns, frameworks

– …

CSE403 Wi09 4

Properties of software design

• Complexity

• Multi-level, continuous, iterative

• Broad potential solution space (in most cases)

• Relatively unclear criteria for selecting solution

CSE403 Wi09 5

Complexity

• ―Software entities are more complex for their size

than perhaps any other human construct, because no

two parts are alike (at least above the statement

level). If they are, we make the two similar parts into

one… In this respect software systems differ

profoundly from computers, buildings, or

automobiles, where repeated elements abound.‖

—Brooks, 1986

CSE403 Wi09 6

Continuous & iterative

• High-level (―architectural‖) design

– What pieces?

– How connected?

– What does it mean to have conceptual integrity?

• Low-level design

– Should I use a hash table or binary search tree?

• Very low-level design

– Variable naming, specific control constructs, etc.

– About 1000 design decisions at various levels are

made in producing a single page of code

C

o

n

t

i

n

u

o

u

s

i

t

e

r

a

t

i

v

e

1/21/2009

2

Multiple design choices

• There are multiple (perhaps unbounded) designs that

satisfy (at least the functional) aspects of a given set

of requirements

• How does one choose among these alternatives?

– How does one even identify the alternatives?

– How does one reject most bad choices quickly?

– What criteria distinguish good choices from bad

choices?

CSE403 Wi09 7 CSE403 Wi09 8

What criteria?

• In general, there are three high level answers to this

question: and, it is very difficult to answer precisely

– Satisfying functional and performance

requirements

– Managing complexity

– Accommodating future change

• Well, also reliability, safety, understandability,

compatibility, robustness, …

CSE403 Wi09 9

Managing complexity

• The technique of mastering complexity has been

known since ancient times: Divide et impera (Divide

and Rule). —Dijkstra, 1965

• …as soon as the programmer only needs to consider

intellectually manageable programs, the alternatives

he is choosing from are much, much easier to cope

with. —Dijkstra, 1972

• The complexity of the software systems we are asked

to develop is increasing, yet there are basic limits

upon our ability to cope with this complexity. How

then do we resolve this predicament?

—Booch, 1991

CSE403 Wi09 10

Divide and conquer

• We have to decompose large systems to be able to build them

– The ―modern‖ problem of composing systems from pieces is

equally or more important

• It’s not modern, though: we’ve had to compose for as

long as we have decomposed

– And closely related to decomposition in many ways

• For software, decomposition techniques are distinct from those

used in physical systems

– Fewer constraints are imposed by the material

CSE403 Wi09 11

Composition

• Divide and conquer. Separate your concerns. Yes.

But sometimes the conquered tribes must be reunited

under the conquering ruler, and the separated

concerns must be combined to serve a single

purpose.‖ —M. Jackson, 1995

• Jackson’s view of composition as printing with four-

color separation

• Remember, composition in programs is not as easy

as conjunction in logic

CSE403 Wi09 12

Benefits of decomposition

• Decrease size of tasks

• Support independent testing and analysis

• Separate work assignments

• Ease understanding

• In principle, can significantly reduce paths to consider

by introducing an interface

1/21/2009

3

CSE403 Wi09 13

Which decomposition?

• How do we select a decomposition?

– We determine the desired criteria

– We select a decomposition (design) that will achieve those criteria

– Question: whether do the potential decompositions even come

from?

• In theory, that is; in practice, it’s hard to

– Determine the desired criteria with precision

– Tradeoff among various conflicting criteria

– Figure out if a design satisfies given criteria

– Find a better one that satisfies more criteria

• In practice, it’s easy to

– Build something designed pretty much like the last one

– This has benefits, too: understandability, properties of the pieces,

etc.

CSE403 Wi09 14

Structure

• The focus of most design approaches is structure

• What are the components and how are they put

together?

• Behavior is important, but largely indirectly

– Satisfying functional and performance

requirements

CSE403 Wi09 15

Alan Perlis quotations: aside

• If you have a procedure with 10 parameters, you

probably missed some.

• One man's constant is another man's variable.

• There are two ways to write error-free programs; only

the third one works.

• When someone says "I want a programming

language in which I need only say what I wish done,"

give him a lollipop.

• Simplicity does not precede complexity, but follows it.

CSE403 Wi09 16

Conceptual integrity

• Brooks and others assert that conceptual integrity is

a critical criterion in design

– ―It is better to have a system omit certain

anomalous features and improvements, but to

reflect one set of design ideas, than to have one

that contains many good but independent and

uncoordinated ideas.‖ —Brooks, MMM

• Such a design often makes it far easier to decide

what is easy and reasonable to do as opposed to

what is hard and less reasonable to do

– This is not always what management wants to

hear

CSE403 Wi09 17

Accommodating change

• ―…accept the fact of change as a way of life, rather

than an untoward and annoying exception.‖

—Brooks, 1974

• Software that does not change becomes useless

over time. —Belady and Lehman

• Internet time makes the need to accommodate

change even more apparent

CSE403 Wi09 18

Anticipating change

• It is generally believed that to accommodate change

one must anticipate possible changes

– Counterpoint: Extreme Programming

• By anticipating (and perhaps prioritizing) changes,

one defines additional criteria for guiding the design

activity

• It is not possible to anticipate all changes

1/21/2009

4

CSE403 Wi09 19

Brooks’ view

• Brooks says he is a ―thoroughgoing, died-in-the-wool empiricist.

• ―Our designs are so complex there is no hope of getting them

right first time by pure thought. To expect to is arrogant.

• ―So, we must adopt design-build processes that incorporate

evolutionary growth …

– ―Iteration, and restart if necessary

– ―Early prototyping and testing with real users‖

• Maybe this is more an issue of requirements and specification,

but I think it applies to design, too

– ―Plan to throw one away, you will anyway.‖

CSE403 Wi09 20

Properties of design

• Cohesion

• Coupling

• Complexity

• Correctness

• Correspondence

• Makes designs ―better‖, one presumes

• Worth paying attention to

CSE403 Wi09 21

Cohesion

• The reason that elements are found together in a

module

– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent is useful

• During maintenance, one of the major structural

degradations is in cohesion

– Need for ―logical remodularization‖

CSE403 Wi09 22

Coupling

• Strength of interconnection between modules

• Hierarchies are touted as a wonderful coupling

structure, limiting interconnections

– But don’t forget about composition, which requires

some kind of coupling

• Coupling also degrades over time

– ―I just need one function from that module…‖

– Low coupling vs. no coupling

CSE403 Wi09 23

Unnecessary coupling hurts

• Propagates effects of changes more widely

• Harder to understand interfaces (interactions)

• Harder to understand the design

• Complicates managerial tasks

• Complicates or precludes reuse

• May lead to ―clone and own‖

CSE403 Wi09 24

It’s easy to...

• ...reduce coupling by calling a system a single

module

• …increase cohesion by calling a system a single

module

• No satisfactory measure of coupling

– Either across modules or across a system

1/21/2009

5

Complexity

• Simpler designs are better, all else being equal

• But, again, no useful measures of design/program

complexity exist

– There are dozens of such measures; e.g.,

McCabe’s cyclomatic complexity = E - N + p

• E = the number of edges of the CFG

• N = the number of nodes of the CFG

• p = the number of connected components

– My understanding is that, to the first order, most of

these measures are linearly related to ―lines of

code‖

CSE403 Wi09 25 CSE403 Wi09 26

Correctness

• Well, yeah

• Even if you ―prove‖ modules are correct, composing

the modules’ behaviors to determine the system’s

behavior is hard

• Leveson and others have shown clearly that a

system can fail even when each of the pieces work

properly – this is because many systems have

―emergent‖ properties

• Arguments are common about the need to build

―security‖ and ―safety‖ and … in from the beginning

Correspondence

• ―Problem-program mapping‖

• The way in which the design is associated with the

requirements

• The idea is that the simpler the mapping, the easier it

will be to accommodate change in the design when

the requirements change

• M. Jackson: problem frames

– In the style of Polya

CSE403 Wi09 27 CSE403 Wi09 28

Functional decomposition

• Divide-and-conquer based on functions

– input;

compute;

output

• Then proceed to decompose compute

• This is stepwise refinement (Wirth, 1971)

• There is an enormous body of work in this area,

including many formal calculi to support the approach

– Closely related to proving programs correct

• More effective in the face of stable requirements

Information hiding

• Information hiding is perhaps the most important

intellectual tool developed to support software design

[Parnas 1972]

– Makes the anticipation of change a centerpiece in

decomposition into modules

• Provides the fundamental motivation for abstract data

type (ADT) languages

– And thus a key idea in the OO world, too

• The conceptual basis is key

CSE403 Wi09 29 CSE403 Wi09 30

Basics of information hiding

• Modularize based on anticipated change

– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)

• Separate interfaces from implementations

– Implementations capture decisions likely to

change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

• Modules are also work assignments

1/21/2009

6

CSE403 Wi09 31

Anticipated changes

• Key criterion for decomposition

• The most common anticipated change is ―change of

representation‖

– Anticipating changing the representation of data

and associated functions (or just functions)

– Again, a key notion behind abstract data types

• Ex:

– Cartesian vs. polar coordinates; stacks as linked

lists vs. arrays; packed vs. unpacked strings

Claim

• We less frequently change representations than we used to

– We have significantly more knowledge about data structure

design than we did 25 years ago

– Memory is less often a problem than it was previously, since

it’s much less expensive

• Therefore, we should think twice about anticipating that

representations will change

– This is important, since we can’t simultaneously anticipate all

changes

– Ex: Changing the representation of null-terminated strings in

Unix systems wouldn’t be sensible

• And this doesn’t represent a stupid design decision

CSE403 Wi09 32

Other anticipated changes?

• Information hiding isn’t only ADTs

• Algorithmic changes

– (These are almost always part and parcel of ADT-

based decompositions)

– Monolithic to incremental algorithms

– Improvements in algorithms

• Replacement of hardware sensors

– Ex: better altitude sensors

• More?

CSE403 Wi09 33 CSE403 Wi09 34

Central premise I

• We can effectively anticipate changes

– Unanticipated changes require changes to interfaces or

(more commonly) simultaneous changes to multiple modules

• How accurate is this premise?

– We have no idea

– There is essentially no research about whether anticipated

changes happen

– Nor do we have disciplined ways to figure out how to better

anticipate changes

– Nor do we have any way to assess the opportunity cost of

making one decision over another

CSE403 Wi09 35

The A-7 Project

• In the late 1970’s, Parnas led a project to redesign

the software for the A-7 flight program

– One key aspect was the use of information hiding

• The project had successes, including a much

improved specification of the system and the

definition of the SCR requirements language

• But little data about actual changes was gathered

CSE403 Wi09 36

Central premise II

• Changing an implementation is the best change,

since it’s isolated

• This may not always be true

– Changing a local implementation may not be easy

– Some global changes are straightforward

• Mechanically or systematically

– Miller’s simultaneous text editing

– Griswold’s work on information transparency

1/21/2009

7

CSE403 Wi09 37

Central premise III

• The semantics of the module must remain

unchanged when implementations are replaced

– Specifically, the client should not care how the

interface is implemented by the module

• But what captures the semantics of the module?

– The signature of the interface? Performance?

What else?

CSE403 Wi09 38

Central premise IV

• One implementation can satisfy multiple clients

– Different clients of the same interface that need

different implementations would be counter to the

principle of information hiding

• Clients should not care about implementations,

as long as they satisfy the interface

– Kiczales’ work on open implementations

CSE403 Wi09 39

Information hiding reprise

• It’s probably the most important design technique we

know

• And it’s broadly useful

• It raised consciousness about change

• But one needs to evaluate the premises in specific

situations to determine the actual benefits (well, the

actual potential benefits)

Questions?

CSE403 Wi09 40

