
CSE403: Software Engineering
Reid Holmes
Winter 2009



COMPLEXITY



NSB REDUX

• Confusions over accidental complexity

• Emergence of OOP

• “The best way to address the complexity of software is to 
not build it at all”

• Several NSB responses highlight software reuse

• As a means to reduce complexity

• As a means to improve productivity

• As a means to increase reliability



SOFTWARE REUSE

• Domain-specific component markets

• Populated by carefully created reusable components

• New features are added by dropping in components

• Accounts for 53% of reuse at NASA [Selby 2005]

• Three main impediments:

• High up-front cost [Gaffney 1992, ICSE]

• Library scaling problem [Biggerstaff 1994, ICSR]

• Architectural mismatch [Garlan et. al. 1995, IEEE Software]



ECONOMICS

• Budgets are drawn up annually

• Heavy emphasis on the current quarter

• Reusable software is:

• ~Twice as expensive [Gaffney 1992, ICSE]

• ~Three times as expensive [Brooks 1975]

• Requires careful forethought to determine what software 
will be reused and whether any savings outweigh extra costs

• What is the benefit to the customer?



LIBRARY SCALING
• Two extremes:

• Large, feature-laden, components

• Small, simple, components

• Adapting large components to a system can be difficult

• The effort of adapting a small component might outweigh 
any benefits of reuse in the first place



ARCHITECTURAL MISMATCH

• Even reusable code makes some assumptions about how it 
should be reused; these assumptions are often implict

• Explicit assumptions are often easy to identify:

• Programming language

• Libraries & frameworks

• Implicit assumptions are harder to spot:

• Topology assumptions

• Protocols of use

• Implicit assumptions are often not documented because the 
original developer may not have considered them constraints



AN ALTERNATIVE REUSE 
APPROACH

8

UltiGPX

I wish UltiGPX 

showed me 

how my 

elevation has 

changed...

Bug: UltiGPX should 
visualize elevation 
changes in tracks 
using a profile view



MOTIVATION

9

UltiGPX

Azureus

1) Plan

2) Enact



MANUAL REUSE APPROACH

10

• Easy to get discouraged

• Difficult to modify earlier decisions

• Easy to attempt infeasible tasks

• Piecemeal nature diverts attention 
from core technical difficulties



PRAGMATIC REUSE

• White-box reuse

• Code Scavenging [Krueger 1992, ACM Computing Surveys]

• Ad hoc nature increases risk of bad decisions

• Adaptation expensive and overwhelming

• Industrially effective

• Effective reuse approach [Frakes 1995, CACM]

• Common risk-aversion practice [Cordy 2003, IWPSE]

• Replicate & specialize [Kapser & Godfrey, 2006, WCRE]

11



PRAGMATIC REUSE 
PROCESS

12

Identify starting point

Plan task /

triage dependencies

Enact plan

Evaluate reused code

Abort

task

Re-implement 

feature



PLANNING A TASK

• 4 main kinds of decisions:

• Common

• Accept

• Reject

• Remap

13

SpeedGraphic.drawChart()

Legend
O Method or Field

! Call or Reference



TRANSITIVE IMPLICATIONS

14
    Accepted Code     Rejected Code     Remapped Code     Common Code



ENACTMENT PROCESS

15

Developer’s

System

Existing

Code

1) Extraction 2) Integration

    Accepted Code

    Rejected Code

    Remapped Code



H-1: TASK TIME

Developers using Gilligan significantly faster

Repeated Measures ANOVA (F(1,14)=5.1,p=0.04)
16

jGnash

Manual

jGnash

 Gilligan

aTunes

Manual

aTunes

Gilligan

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

Task / Treatments

T
im

e
 (

m
in

)

Task Time

Supported Reuse

Manual Reuse

Task Success

Task Failure



EFFORT-BASED CASE STUDY

“How much effort would a ‘perfect’ 
developer need to expend to enact a 
pragmatic reuse plan?”

17

Case Manual Gilligan
Decision 

Reduction

T1 60 2 97%

T2 25 4 84%

Automatically resolving low-level 

compilation errors enables the developer 

to focus on higher-level mismatch



PR SHORTCOMINGS

• Pragmatic reuse tasks are fraught with problems

• Reused code is less-understood

• Tracking and merging changes difficult

• Often associated with bad practice

• Rely on software engineers to make the right decisions 
about downsides and benefits of these tasks

• Questions?

18


