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COMPLEXITY



NSB REDUX

• Confusions over accidental complexity

• Emergence of OOP

• “The best way to address the complexity of software is to 
not build it at all”

• Several NSB responses highlight software reuse

• As a means to reduce complexity

• As a means to improve productivity

• As a means to increase reliability



SOFTWARE REUSE

• Domain-specific component markets

• Populated by carefully created reusable components

• New features are added by dropping in components

• Accounts for 53% of reuse at NASA [Selby 2005]

• Three main impediments:

• High up-front cost [Gaffney 1992, ICSE]

• Library scaling problem [Biggerstaff 1994, ICSR]

• Architectural mismatch [Garlan et. al. 1995, IEEE Software]



ECONOMICS

• Budgets are drawn up annually

• Heavy emphasis on the current quarter

• Reusable software is:

• ~Twice as expensive [Gaffney 1992, ICSE]

• ~Three times as expensive [Brooks 1975]

• Requires careful forethought to determine what software 
will be reused and whether any savings outweigh extra costs

• What is the benefit to the customer?



LIBRARY SCALING
• Two extremes:

• Large, feature-laden, components

• Small, simple, components

• Adapting large components to a system can be difficult

• The effort of adapting a small component might outweigh 
any benefits of reuse in the first place



ARCHITECTURAL MISMATCH

• Even reusable code makes some assumptions about how it 
should be reused; these assumptions are often implict

• Explicit assumptions are often easy to identify:

• Programming language

• Libraries & frameworks

• Implicit assumptions are harder to spot:

• Topology assumptions

• Protocols of use

• Implicit assumptions are often not documented because the 
original developer may not have considered them constraints



AN ALTERNATIVE REUSE 
APPROACH
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UltiGPX

I wish UltiGPX 

showed me 

how my 

elevation has 

changed...

Bug: UltiGPX should 
visualize elevation 
changes in tracks 
using a profile view



MOTIVATION
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UltiGPX

Azureus

1) Plan

2) Enact



MANUAL REUSE APPROACH
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• Easy to get discouraged

• Difficult to modify earlier decisions

• Easy to attempt infeasible tasks

• Piecemeal nature diverts attention 
from core technical difficulties



PRAGMATIC REUSE

• White-box reuse

• Code Scavenging [Krueger 1992, ACM Computing Surveys]

• Ad hoc nature increases risk of bad decisions

• Adaptation expensive and overwhelming

• Industrially effective

• Effective reuse approach [Frakes 1995, CACM]

• Common risk-aversion practice [Cordy 2003, IWPSE]

• Replicate & specialize [Kapser & Godfrey, 2006, WCRE]
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PRAGMATIC REUSE 
PROCESS
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PLANNING A TASK

• 4 main kinds of decisions:

• Common

• Accept

• Reject

• Remap
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TRANSITIVE IMPLICATIONS
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    Accepted Code     Rejected Code     Remapped Code     Common Code



ENACTMENT PROCESS
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H-1: TASK TIME

Developers using Gilligan significantly faster

Repeated Measures ANOVA (F(1,14)=5.1,p=0.04)
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EFFORT-BASED CASE STUDY

“How much effort would a ‘perfect’ 
developer need to expend to enact a 
pragmatic reuse plan?”
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Case Manual Gilligan
Decision 

Reduction

T1 60 2 97%

T2 25 4 84%

Automatically resolving low-level 

compilation errors enables the developer 

to focus on higher-level mismatch



PR SHORTCOMINGS

• Pragmatic reuse tasks are fraught with problems

• Reused code is less-understood

• Tracking and merging changes difficult

• Often associated with bad practice

• Rely on software engineers to make the right decisions 
about downsides and benefits of these tasks

• Questions?
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