
2/4/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

Software architecture

• An area of significant attention in the last decade or

so

– D. Garlan and M. Shaw. An Introduction to Software

Architecture. In V. Ambriola and G. Tortora (ed.), Advances

in Software Engineering and Knowledge Engineering (1993).

– D.E. Perry and A.L. Wolf. Foundations for the Study of

Software Architecture. ACM SIGSOFT Software Engineering

Notes 17, 4 (Oct 1992).

• There are two basic goals (in my opinion)

– Capturing, cataloguing and exploiting experience

in software designs

– Allowing reasoning about classes of designs

Box-and-arrow diagrams:
taken from the web without attribution These diagrams

• Clearly, these diagrams give value

– You can find them all over the web, in textbooks,

in technical documents, in research papers, over

whiteboards in your office, on napkins in the

cafeteria, etc.

• At the same time, they are generally ill-defined: what

does a box represent? an arrow? a layer? adjacent

boxes? etc.

• One view of software architecture research is to

determine ways to give these diagrams clearer

semantics and thus additional value

An aside: compilers I

• The first compilers had ad hoc designs

• Over time, as a number of compilers were built, the

designs became more structured

– Experience yielded benefits

• Compiler phases, symbol table, etc.

– Plenty of theoretical advances

• Finite state machines, parsing, ...

An aside: compilers II

• Compilers are perhaps the best example of shared experience

in design

– Lots of tools that capture common aspects

– Undergraduate courses build compilers

– Most compilers look pretty similar in structure

• But we still don’t fully generate compilers

– Despite lots of effort and lots of money

– In any case, the code in compilers is often less clean than

the designs

• Despite this, the perception of a shared design gives leverage

– Communication among programmers

– Selected deviations can be explained more concisely and

with clearer reasoning

2/4/2009

2

Other domains?

• Which other domains are as successful in this regard as

compilers?

• Quite a few, but generally much more narrow

– DARPA ran a large project, Domain-Specific Software

Architectures (DSSA) a few years ago

• ISI: Command and control message processing

• Honeywell: Guidance, navigation and control

• …

– Some 4GL approaches are basically domain-specific

systems

• Essentially: (Parnas) program families in which systems have

“so much in common that it pays to study their common aspects

before looking at the aspects that differentiate them”

– The OS example has not really come to fruition

Back to software architecture

• One hope is that by studying our experiences with a

variety of systems, we can gain leverage as we did

with compilers

• Capture the strengths and weaknesses of various

software structures

– Perhaps enabling designers to select appropriate

architectures more effectively

• Benefit from high-level study of software structure

Another motivation:
architectural mismatch

• Garlan, Allen, Ockerbloom tried to build a toolset to support

software architecture definition from existing components

– OODB (OBST)

– graphical user interface toolkit (Interviews)

– RPC mechanism (MIG/Mach RPC)

– Event-based tool integration mechanism (Softbench)

• It went to hell in a handbasket, not because the pieces didn’t

work, but because they didn’t fit together

• Architectural Mismatch: Why Reuse Is So Hard. IEEE Software

12, 6 (Nov. 1995).

Mismatches included

• Excessive code size

• Poor performance

• Needed to modify out-of-the-box components (e.g.,

memory allocation)

• Error-prone construction process

• …

So what?

• The claim is that many of the problems were of an

architectural nature

– What assumptions are made, need they be made,

etc.?

• With some forethought, many of these mismatches

could, in principle, be avoided

Some classic definitions:
http://www.sei.cmu.edu/architecture/definitions.html

• …architecture is concerned with the selection of architectural
elements, their interactions, and the constraints on those
elements and the interactions necessary to provide a framework
in which to satisfy the requirements and serve as a basis for the
design [Perry and Wolf].

• An architecture is the set of significant decisions about the
organization of a software system, the selection of the structural
elements and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations
among those elements, the composition of these structural and
behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization---these
elements and their interfaces, their collaborations, and their
composition [Booch, Rumbaugh, and Jacobson, 1999]

2/4/2009

3

More definitions

• ...beyond the algorithms and data structures of the computation;
designing and specifying the overall system structure emerges
as a new kind of problem. Structural issues include gross
organization and global control structure; protocols for
communication, synchronization, and data access; assignment
of functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and
selection among design alternatives [Garlan and Shaw].

• The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time [Garlan and Perry].

• ...an abstract system specification consisting primarily of
functional components described in terms of their behaviors and
interfaces and component-component interconnections [Hayes-
Roth].

Components and connectors

• (Most people now agree that) software architectures

includes components and connectors

• Components define the basic computations

comprising the system: abstract data types, filters,

etc.

• Connectors define the interconnections between

components: procedure call, event announcement,

asynchronous message sends, etc.

• The line between them may be fuzzy at times

– Ex: A connector might (de)serialize data, but can it

perform other, richer computations?

Architectural style

• Defines the vocabulary of components and

connectors for a family (style)

• Constraints on the elements and their combination

– Topological constraints (no cycles,

register/announce relationships, etc.)

– Execution constraints (timing, etc.)

• By choosing a style, one gets all the known

properties of that style (for any architecture in that

style)

• These properties can be quite broad

– Ex: performance, lack of deadlock, ease of making

particular classes of changes, etc.

Not just boxes and arrows

• Consider pipes & filters, for example (Garlan and Shaw)

– Pipes must compute local transformations

– Filters must not share state with other filters

– There must be no cycles

• If these constraints are not satisfied, it’s not a pipe & filter

system

– One can’t tell this from a picture

– One can formalize these constraints

scan parse optimize generate

WRIGHT

• WRIGHT provides a formal basis for architectural description

(ADL = architectural description language)

• Language for precisely defining an architectural specification, as

a basis for analyzing the architecture of individual software

systems and families of systems

• Underlying model in CSP (communicating sequential process,

Hoare), checkable using standard model checking technology

– Defines a set of standard consistency and completeness

checks

Defining a connector in WRIGHT:
client-server

connector C-S-connector =

role Client = (request!x  result?y  Client)  §

role Server = (invoke?x  return!y  Server)  §

glue = (Client.request?x  Service.invoke!x 

Service.return?y  Client.result!y  glue)

 §

2/4/2009

4

Pipe connector in WRIGHT

Connector Pipe =

role Write = write  Writer  close  
role Reader =

let ExitOnly = close  
in let DoRead =

(read  Reader  read-eof  ExitOnly)

in DoRead  ExitOnly

glue = let ReadOnly =

Reader.Read  ExitOnly

Reader.read-eof  Reader.close  
Reader.close  

• Ensures (among other things) that there is a way to notify reader than
pipe is empty when writer closes the pipe

Decoding a little bit

• Connectors represent links to components on the

roles, which are ports of the connectors

– The WRIGHT process descriptions describe the

obligations of each connector

• The glue process coordinates the behavior of the

roles

– Essentially, it defines a high-level protocol

• One can then prove properties about the stated

protocols

Benefits

• In the pipes & filters example, the constraints ensure

a lack of deadlock

– In any instantiation of the style that satisfies the

constraints

• One can think of the constraints as obligations on the

designer and on the implementor

– Some properties can be automatically checked

Specializations

• Architectural styles can have specializations

– A pipeline might further constrain an architecture

to a linear sequence of filters connected by pipes

– A pipeline would have all properties that the pipe

and filter style has, plus more

C2 Architecture:
UC Irvine (Taylor et al.)

• Based on generalization of a collection of designs of

user interface systems

• Informally, a C2 architecture is a network of

concurrent components linked together by

connectors

• http://www.ics.uci.edu/pub/c2/c2.html

C2 Composition

• The top of a component may be connected to the

bottom of a single connector

• The bottom of a component may be connected to the

top of a single connector

• There is no bound on the number of components or

connectors that may be attached to a single

connector

• When two connectors are attached to each other, it

must be from the bottom of one to the top of the other

2/4/2009

5

C2 Communication

• Solely by exchanging messages

• Each component has a top and bottom domain

– The top specifies the set of notifications to which a

component responds, and the set of requests it emits

upwards

– The bottom specifies the set of notifications that a

component emits downwards and the set of requests to

which it responds

• Central principle: limited visibility (substrate independence)

– A component within the hierarchy can only be aware of

components “above” it and is completely unaware of the

components “beneath” it

Blackboard architectures

• The knowledge sources: separate,

independent units of application

dependent knowledge. No direct

interaction among knowledge sources

• The blackboard data structure:

problem-solving state data.

Knowledge sources make changes to

the blackboard that lead incrementally

to a solution to the problem.

• Control: driven entirely by state of

blackboard. Knowledge sources

respond opportunistically to changes

in the blackboard.

CSE403 Wi09 26

Blackboard systems have traditionally been used for applications requiring

complex interpretations of signal processing, such as speech and pattern

recognition.

Hearsay-II: blackboard

CSE403 Wi09 27

Well, do they help?

• I like the basic software architecture research as an

intellectual tool

– The work is helping us better understand classes

of software structures that have shown themselves

as useful

– Simply improving our shared terminology is a

benefit

Open question I

• What properties can be analyzed?

– WRIGHT

• Reason about architectures in terms of

protocols, using a CSP-like language

• Roughly, type-checking of architectural styles

– Of these, which are sufficiently important to justify

the investment

• The investment is high, but in theory amortized

– What about across heterogeneous architectures?

Open question II

• How does one produce new architectural styles?

• When?

2/4/2009

6

Open question III

• What is the relationship between architectural and

implementation?

– Does architectural information aid in going from

design to implementation?

– What happens as the implementation evolves in

ways inconsistent with the architecture?

• Which properties still hold, and how do we

know this?

• ArchJava?

Experience

• It’s a hot area, with lots of companies paying

attention

• Allen & Garlan reported on a case study in applying

architectural modeling to the AEGIS Weapons

System

– Used formalism to help “expose and resolve some

of the architectural problems that arose in

implementing the system”

• Similar advantages for the HLA project

– Distributed simulation for the DoD

AEGIS Weapons System:
control of US Navy ships

Experiment

Control

Doctrine

Validation

Display

Server

Doctrine

Authoring
Track Server

GeoServer
Doctrine

Reasoning
CS10

CS7

CS4 CS5

CS1 CS3

CS8

CS2

CS9CS6

Example benefits in AEGIS

• Clarifying client-server misconceptions

– Which party initiated interactions?

– Re-established after every request?

– Synchronous or asynchronous?

• WRIGHT used to clarify

– Avoiding deadlocks

– Reducing unnecessary synchronization

– And to simplify instrumentation of the architecture

Forcing discussions

• In some ways, the primary benefit of architecture

Garlan is that it forces discussions of some critical

issues

– The Xerox PARC Mesa/Cedar group did roughly

the equivalent by spending enormous amounts of

times in defining and clarifying interfaces, before

coding

• Finding errors earlier is generally considered to be

better, of course

• I’m unsure the degree to which the formalism per se

helps, although there are surely some supporting

examples

Questions?

CSE403 Wi09 36

