
1

Collaborative Programming:

Pair Programming and Reviews

and

Maintenance and Refactoring

CSE 403

Pair programming

� pair programming: 2 people, 1 computer

� take turns “driving”

� rotate pairs often

� pair people of different experience levels

� pros:

2

� pros:

� Can produce better code

� An inexperienced coder can learn from an experienced one

� cons:

� Some people don’t like it

Reviews

� Review: Other team member(s) read an artifact
(design, specification, code) and suggest improvements

� documentation

� defects in program logic

� program structure

� coding standards & uniformity with codebase

3

� coding standards & uniformity with codebase

� enforce subjective rules

� ... everything is fair game

� Feedback leads to refactoring, followed by a additional
reviews and eventually approval

Motivation for reviews

� Can catch most bugs, design flaws early.

� > 1 person has seen every piece of code.
� Prospect of someone reviewing your code raises quality threshold.

� Forces code authors to articulate their decisions and to
participate in the discovery of flaws.

Allows junior personnel to get early hands-on

4

� Allows junior personnel to get early hands-on
experience without hurting code quality

� Pairing them up with experienced developers

� Can learn by being a reviewer as well

� Accountability. Both author and reviewers are
accountable for the code.

� Explicit non-purpose:

� Assessment of individuals for promotion, pay, ranking, etc.

� Management is usually not permitted at reviews

Types of code review

� What is reviewed:

� A specification

� A coherent module (sometimes called an “inspection”)

� A single checkin or code commit (incremental review)

� Who participates:

One other developer� One other developer

� A group of developers

� Where:

� In-person meeting

� Best to prepare beforehand: artifact is distributed in advance

� Preparation usually identifies more defects than the meeting

� Email/electronic

5

Review technique and goals

� Specific focus?

� Sometimes, a specific list of defects or code characteristics

� Error-prone code

� Previously-discovered problem types

� Security

� Checklist (coding standards)

� Automated tools (type checkers, lint) can be better

� Technique

� Does developer present the artifact to a group?

� Only identify defects, or also brainstorm fixes?

� Sometimes, a specific methodology

� “Walkthrough” = playing computer, trace values of sample data

6

Code reviews in industry

� Code reviews are a very common industry practice.

� Made easier by advanced tools that:

� integrate with configuration management systems

� highlight changes (i.e., diff function)

� allow traversing back into history

7

� E.g.: Eclipse, SVN tools

My approach

� Distribute code (or other artifacts) ahead of time

� Common pagination

� Documentation is required (as is good style)

� No extra overview from developer

� Each reviewer focuses where he/she sees fit

Mark up with lots of comments� Mark up with lots of comments

� Identify 5 most important issues

� At meeting, go around the table raising one issue

� Discuss the reasons for the current design, and possible
improvements

� Author takes all printouts and addresses all issues

� Not just those raised in the meeting

8

Software quality assurance (review)

� What are we assuring?

� Why are we assuring it?

� How do we assure it?

� How do we know we have assured it?

What are we assuring?

� Validation: building right system?

� Verification: building system right?

� Presence of good properties?

� Absence of bad properties?

Identifying errors?� Identifying errors?

� Confidence in the absence of errors?

� Robust? Safe? Secure? Available? Reliable? Understandable?
Modifiable? Cost-effective? Usable? …

Why are we assuring it?

� Business reasons

� Ethical reasons

� Professional reasons

� Personal satisfaction

� Legal reasons� Legal reasons

� Social reasons

� Economic reasons

� …

How do we assure it?

Product

PeopleProcess

How do we know we have assured it?

� Depends on “it”

� Depends on what we mean by “assurance”

� …

Exercise

public class Account {
double principal,rate; int daysActive,accountType;

public static final int STANDARD=0, BUDGET=1,
PREMIUM=2, PREMIUM_PLUS=3;

}
...
public static double calculateFee(Account[] accounts)
{

"Code review" this checkin.
What feedback would you give the
author? What changes would you
request before checkin?

14

{
double totalFee = 0.0;
Account account;
for (int i=0;i<accounts.length;i++) {

account=accounts[i];
if (account.accountType == Account.PREMIUM ||

account.accountType == Account.PREMIUM_PLUS)
totalFee += .0125 * (// 1.25% broker's fee

account.principal * Math.pow(account.rate,
(account.daysActive/365.25))
- account.principal); // interest-principal

}
return totalFee;

}

Improved code (page 1)

/** An individual account. Also see CorporateAccount. */
public class Account {

private double principal;
/** The yearly, compounded rate (at 365.25 days per year). */
private double rate;
/** Days since last interest payout. */
private int daysActive;
private Type type;

/** The varieties of account our bank offers. */

15

/** The varieties of account our bank offers. */
public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

/** Compute interest. **/
public double interest() {

double years = daysActive / 365.25;
double compoundInterest = principal * Math.pow(rate, years);
return compoundInterest – principal;

}

/** Return true if this is a premium account. **/
public boolean isPremium() {

return accountType == Type.PREMIUM ||
accountType == Type.PREMIUM_PLUS;

}

Improved code (page 2)

/** The portion of the interest that goes to the broker. **/
public static final double BROKER_FEE_PERCENT = 0.0125;

/** Return the sum of the broker fees for all the given accounts. **/
public static double calculateFee(Account accounts[]) {

double totalFee = 0.0;
for (Account account : accounts) {

if (account.isPremium()) {
totalFee += BROKER_FEE_PERCENT * account.interest();

}

16

}
}
return totalFee;

}

}

Refactoring

17

Problem: "Bit rot"

� After several months and new versions, many
codebases reach one of the following states:

� rewritten: Nothing remains from the original code.

� abandoned: The original code is thrown out and rewritten from
scratch.

18

� Why is this?

� Systems evolve to meet new needs and add new features

� If the code's structure does not also evolve, it will "rot"

� This can happen even if the code was initially reviewed and
well-designed at the time of checkin, and even if checkins are
reviewed

Code maintenance

� maintenance: Modification of a software product after
it has been delivered.

Purposes:

� fix bugs

� improve performance

� improve design

19

� improve design

� add features

� ~80% of maintenance is for non-bug-fix-related activities such
as adding functionality (Pigosky 1997)

Maintenance is hard

� It's harder to maintain (someone else's?) code than
write your own new code.

� "house of cards" phenomenon (don't touch it!)

� must understand code written by another developer,
or code you wrote at a different time with a different mindset

� most developers hate code maintenance

20

� most developers hate code maintenance

� Why?

� Maintenance is how devs spend most of their time.

� It pays to design software well and plan ahead so that
later maintenance will be less painful.

� Capacity for future change must be anticipated

Refactoring

� refactoring: Improving a piece of software's internal
structure without altering its external behavior.

� Not the same as code rewriting

� Incurs a short-term time/work cost to reap long-term benefits

21

� Incurs a short-term time/work cost to reap long-term benefits

� A long-term investment in the overall quality of your system.

Why refactor?

� Why fix a part of your system that isn't broken?

Each part of your system's code has 3 purposes:

� 1. to execute its functionality,

� 2. to allow change,

� 3. to communicate well to developers who read it.

22

� If the code does not do one or more of these, it is broken.

Low-level refactoring

Names:

� Renaming (methods, variables)

� Naming (extracting) "magic" constants

Procedures:

� Extracting code into a method

� Extracting common functionality (including duplicate code) into a
module/method/etc.

23

module/method/etc.

� Inlining a method/procedure

� Changing method signatures

Reordering:

� Splitting one method into several to improve cohesion and
readability (by reducing its size)

� Putting statements that semantically belong together near each
other

� See also http://www.refactoring.org/catalog/

IDE support for refactoring

� Eclipse / Visual Studio support:

� variable / method / class renaming

� method or constant extraction

� extraction of redundant code snippets

� method signature change

extraction of an interface from a type

24

� extraction of an interface from a type

� method inlining

� providing warnings about method

invocations with inconsistent parameters

� help with self-documenting code

through auto-completion

Higher-level refactoring

� Refactoring to design patterns

� Exchanging risky language idioms with safer
alternatives

� Performance optimization

� Clarifying a statement that has evolved over time or is
unclearunclear

� Compared to low-level refactoring, high-level is:
� Not as well-supported by tools

� Much more important!

25

Refactoring plan?

� When you identify an area of your system that:

� isn't especially well designed

� isn't especially thoroughly tested, but seems to work so far

� now needs new features to be added

� What should you do?

26

� What should you do?

� Assume that you have adequate time to "do things right."
(Not always a valid assumption in software...)

Recommended refactor plan

� When you identify an area of your system that:

� isn't especially well designed

� isn't especially thoroughly tested, but seems to work so far

� now needs new features to be added

� What should you do?

27

� What should you do?

� Write unit tests that verify the code's external correctness.

� (They should pass on the current, badly designed code.)

� Refactor the code.

� (Some unit tests may break. Fix the bugs.)

� Add the new features.

"I don't have time to refactor!"

� Refactoring incurs an up-front cost.

� many developers don't want to do it

� most management don't like it, because they lose time and
gain "nothing" (no new features)

� However...

28

� However...

� well-written code is much more conducive to rapid development
(some estimates put ROI at 500% or more for well-done code)

� finishing refactoring increases programmer morale

� developers prefer working in a "clean house"

� When to refactor?

� best done continuously (like testing) as part of the SWE process

� hard to do well late in a project (like testing)

� Why?

Should startups refactor?

� Many small companies and startups skip refactoring.

� "We're too small to need it!"

� "We can't afford it!"

� Reality:

Refactoring is an investment in quality of the company's

29

� Refactoring is an investment in quality of the company's
product and code base, often their prime assets

� Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code

� If a key team member leaves (common in startups), ...

� If a new team member joins (also common), ...

