Collaborative Programming:
Pair Programming and Reviews

and

Maintenance and Refactoring

CSE 403

Pair programming

= pair programming: 2 people, 1 computer
» take turns “driving”
= rotate pairs often
= pair people of different experience levels

= Pros.
= Can produce better code
= An inexperienced coder can learn from an experienced one

= CONns.
= Some people don't like it

Reviews

= Review: Other team member(s) read an artifact
(design, specification, code) and suggest improvements
» documentation
= defects in program logic
= program structure
= coding standards & uniformity with codebase
= enforce subjective rules
= ... everything is fair game

= Feedback leads to refactoring, followed by a additional
reviews and eventually approval

Motivation for reviews

Can catch most bugs, design flaws early.

> 1 person has seen every piece of code.
= Prospect of someone reviewing your code raises quality threshold.

Forces code authors to articulate their decisions and to
participate in the discovery of flaws.

Allows junior personnel to get early hands-on
experience without hurting code quality

= Pairing them up with experienced developers

= Can learn by being a reviewer as well

Accountability. Both author and reviewers are
accountable for the code.

Explicit non-purpose:
= Assessment of individuals for promotion, pay, ranking, etc.
= Management is usually not permitted at reviews

Types of code review

= What is reviewed:
= A specification
= A coherent module (sometimes called an “inspection”)
= A single checkin or code commit (incremental review)

= Who participates:
= One other developer
= A group of developers

= Where:

= In-person meeting
Best to prepare beforehand: artifact is distributed in advance
Preparation usually identifies more defects than the meeting

= Email/electronic

Review technique and goals

= Specific focus?
= Sometimes, a specific list of defects or code characteristics

Error-prone code
Previously-discovered problem types

Security
Checklist (coding standards)

» Automated tools (type checkers, lint) can be better
= Technique
= Does developer present the artifact to a group?
= Only identify defects, or also brainstorm fixes?

= Sometimes, a specific methodology
“Walkthrough” = playing computer, trace values of sample data

Code reviews in industry

= Code reviews are a very common industry practice.

= Made easier by advanced tools that:
»« integrate with configuration management systems
= highlight changes (i.e., diff function)
= allow traversing back into history
« E.g.: Eclipse, SVN tools

[E] aisplay.c L.15> [E] aispiay.c 1.15%

unzigned char *data:x unzigned lohg num,. rest: :E]
unzigned char ®data:
meta_error_trap_push_with_return (display):

if (HGetWindowProperty (display-rxdisplay, meta_error_trap_push (displayl:
event—rxzelectionrequest,requestor, #hetllindowProperty (display—xdisplay,
event-rxselectionrequest,property, 0, 256, F: event—>xzelectionrequest, requestor,
display-ratom_atom_pair, event—rxselectionrequest , property, 0, 256, F
ttype, &format, &num, &rest, &data) |= Succe: display—>atom_atom_pair,
i ttype, &Format, Snum, &rest, Sdata):
meta_error_trap_pop_with_return (display, TRUE}: if (meta_error_trap_pop (display) == Success)
return:

{
A% FIEME: to be 100 correct, should deal with rest > 0,
% but zince we have 4 possible targetz, we will hardly ever

iF{(meta_error_trap_pop_with_return (display, TRUE) == Success) % meet multiple requests with a length > &
*
/% FISME: to be 100¥ correct, should deal with rest > 0, adata = (Atom*)data:
% but zince we have 4 possible targets, we will hardly ever i=0:
% meet multiple requests with a length > 8 while (i < {int] num)
*
adata = (Atom#)data: if {lcorwvert_property (display, screen,
i=0: event—rizelect lonrequest , requestg
while (i < (inkt) mum) adatalil, adatali+1]))
adatali+l] = None: =
if {lcomvert_property (display, screen, i+= 2
event:>§se1ectignregg§st.requestor, h hd|

Kl | 4] |

My approach

Distribute code (or other artifacts) ahead of time
= Common pagination

= Documentation is required (as is good style)

= No extra overview from developer

Each reviewer focuses where he/she sees fit
Mark up with lots of comments
Identify 5 most important issues

At meeting, go around the table raising one issue

= Discuss the reasons for the current design, and possible
improvements

Author takes all printouts and addresses all issues
= Not just those raised in the meeting

Software quality assurance (review)

What are we assuring?

Why are we assuring it?

How do we assure it?

How do we know we have assured it?

What are we assuring?

Validation: building right system?
Verification: building system right?

Presence of good properties?
Absence of bad properties?

Identifying errors?
Confidence in the absence of errors?

Robust? Safe? Secure? Available? Reliable? Understandable?
Modifiable? Cost-effective? Usable? ...

Why are we assuring it?

Business reasons
Ethical reasons
Professional reasons
Personal satisfaction
Legal reasons
Social reasons
Economic reasons

How do we assure it?

Product

Process People

How do we know we have assured it?

= Depends on "it”
= Depends on what we mean by “assurance”

'\'A(/:ﬁdtefre\éigw"kthis cifdweckin. ve th
- at feedback wou ou give the
EXGFCISe author? What chanﬂez WO%I|d you

request before checkin?

public class Account {
double principal, rate; int daysActive,accountType;

public static final int STANDARD=0, BUDGET=1,
PREMIUM=2, PREMIUM PLUS=3;

}

public static double calculateFee (Account|[] accounts)
{
double totalFee = 0.0;
Account account;
for (int i1=0;i<accounts.length;i++) {
account=accounts[i];

if (account.accountType == Account.PREMIUM | |
account.accountType == Account.PREMIUM PLUS)
totalFee += .0125 * (// 1.25% broker's fee

account.principal * Math.pow(account.rate,
(account.daysActive/365.25))
- account.principal); // interest-principal

}

return totalFee;

14

Improved code (page 1)

/** An individual account. Also see CorporateAccount. */
public class Account {
private double principal;
/** The yearly, compounded rate (at 365.25 days per year). */
private double rate;
/** Days since last interest payout. */
private int daysActive;
private Type type;

/** The varieties of account our bank offers. */
public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

/** Compute interest. **/

public double interest () {
double years = daysActive / 365.25;
double compoundInterest = principal * Math.pow(rate, years);
return compoundInterest - principal;

}

/** Return true if this is a premium account. **/
public boolean isPremium() {
return accountType == Type.PREMIUM | |
accountType == Type.PREMIUM PLUS;

Improved code (page 2)

/** The portion of the interest that goes to the broker. **/
public static final double BROKER FEE PERCENT = 0.0125;

/** Return the sum of the broker fees for all the given accounts. **/
public static double calculateFee (Account accounts([]) {
double totalFee = 0.0;
for (Account account : accounts) {
if (account.isPremium()) {

totalFee += BROKER FEE PERCENT * account.interest();

}
}

return totalFee;

16

Refactoring

17

Problem: "Bit rot"

= After several months and new versions, many
codebases reach one of the following states:
« rewritten: Nothing remains from the original code.

abandoned: The original code is thrown out and rewritten from
scratch.

= Why is this?

Systems evolve to meet new needs and add new features
If the code's structure does not also evolve, it will "rot"

This can happen even if the code was initially reviewed and
well-designed at the time of checkin, and even if checkins are
reviewed

18

Code maintenance

= maintenance: Modification of a software product after
it has been delivered.
Purposes:

fix bugs

improve performance
improve design

add features

~80% of maintenance is for non-bug-fix-related activities such

as adding functionality (Pigosky 1997)

19

Maintenance is hard

It's harder to maintain (someone else's?) code than
write your own new code.
= "house of cards" phenomenon (don't touch it!)

= must understand code written by another developer,
or code you wrote at a different time with a different mindset

= most developers hate code maintenance
Why?

Maintenance is how devs spend most of their time.

It pays to design software well and plan ahead so that
later maintenance will be less painful.
=« Capacity for future change must be anticipated

20

Refactoring

= refactoring: Improving a piece of software's internal
structure without altering its external behavior.

= Not the same as code rewriting
= Incurs a short-term time/work cost to reap long-term benefits

= A long-term investment in the overall quality of your system.

21

Why refactor?

= Why fix a part of your system that isn't broken?
Each part of your system's code has 3 purposes:

1. to execute its functionality,
2. to allow change,
3. to communicate well to developers who read it.

=« If the code does not do one or more of these, it is broken.

22

Low-level refactoring

Names:

Renaming (methods, variables)
Naming (extracting) "magic" constants

Procedures:

Extracting code into a method

Extracting common functionality (including duplicate code) into a
module/method/etc.

Inlining a method/procedure
Changing method signatures

Reordering:

Splitting one method into several to improve cohesion and
readability (by reducing its size)

Putting statements that semantically belong together near each
other

s See also http://www.refactoring.org/catalog/

23

= Eclipse / Visual Studio support:

IDE support for refactoring

B298 Open Declaration
Open Type Higrarchy

variable / method / class renaming Lart]_opnsumrwplneriatin £ S

f3E Copy b client.

method or constant extraction oucpy_reme setoucputanresn;
extraction of redundant code snippets
meth Od Signatu re Change = learc | Con\rert.ﬂ.nonymousCIassIlI:IDNested... I

ke " 4 bvteStream.sizeril:
Rename. ..
Move, ..

]
]
4
]

Conwert Mested Type to Top Level...

Pull Up...

extraction of an interface from a type wcmrammree 2o

Extract Intetface. .,

Use Supertype Where Possible, ..

method inlining

Extract Method. ..
Extract Local Variabl

providing warnings about method
invocations with inconsistent parameters

help with self-documenting code
through auto-completion

24

Higher-level refactoring

Refactoring to design patterns

Exchanging risky language idioms with safer
alternatives

Performance optimization

Clarifying a statement that has evolved over time or is
unclear

Compared to low-level refactoring, high-level is:
= Not as well-supported by tools
= Much more important!

25

Refactoring plan?

= When you identify an area of your system that:
= isn't especially well designed
= isn't especially thoroughly tested, but seems to work so far
= Now needs new features to be added

= What should you do?

= Assume that you have adequate time to "do things right."
(Not always a valid assumption in software...)

26

Recommended refactor plan

= When you identify an area of your system that:
= isn't especially well designed
= isn't especially thoroughly tested, but seems to work so far
= Now needs new features to be added

= What should you do?

= Write unit tests that verify the code's external correctness.
(They should pass on the current, badly designed code.)

= Refactor the code.
(Some unit tests may break. Fix the bugs.)

= Add the new features.

27

"T don't have time to refactor!”

= Refactoring incurs an up-front cost.
= many developers don't want to do it

= Mmost management don't like it, because they lose time and
gain "nothing" (no new features)

= However...

= well-written code is much more conducive to rapid development
(some estimates put ROI at 500% or more for well-done code)

« finishing refactoring increases programmer morale
developers prefer working in a "clean house"

= When to refactor?
= best done continuously (like testing) as part of the SWE process

= hard to do well late in a project (like testing)
Why? 28

Should startups refactor?

= Many small companies and startups skip refactoring.
= "We're too small to need it!"
= "We can't afford it!"

= Reality:

= Refactoring is an investment in quality of the company's
product and code base, often their prime assets

= Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code

« If a key team member leaves (common in startups), ...
« If @a new team member joins (also common), ...

29

