
Procedure specifications

CSE 403

Outline

Satisfying a specification; substitutability

Stronger and weaker specifications

Comparing by hand

Comparing via logical formulas

Comparing via transition relations

Specification style; checking preconditions

Slide 2

Specification style; checking preconditions

Satisfaction of a specification

Let P be an implementation and S a specification

P satisfies S iff

Every behavior of P is permitted by S

“The behavior of P is a subset of S”

The statement “P is correct” is meaningless

Though often made!

Slide 3

Though often made!

If P does not satisfy S, either (or both!) could be “wrong”

“One person’s feature is another person’s bug.”

It’s usually better to change the program than the spec

Procedure specifications

Example of a procedure specification

// requires i > 0

// modifies nothing

// returns true iff i is a prime number

public static boolean isPrime (int i)

General form of a procedure specification

Slide 4

General form of a procedure specification

// requires

// modifies

// throws

// effects

// returns

A specification denotes a set of procedures

Some set of procedures satisfies a specification

Suppose a procedure takes an integer as an argument

Spec 1: “returns an integer ≥ its argument”

Spec 2: “returns a non-negative integer ≥ its argument”

Spec 3: “returns argument + 1”

Spec 4: “returns argument2 ”

Spec 5: “returns Integer.MAX_VALUE”

Slide 5

Spec 5: “returns Integer.MAX_VALUE”

Consider these implementations

Code 1: return arg * 2;

Code 2: return abs(arg);

Code 3: return arg + 5;

Code 4: return arg * arg;

Code 5: return Integer.MAX_VALUE;

Specification strength and substitutability

A stronger specification promises more

It constrains the implementation more

The client can make more assumptions

Substitutability

A stronger specification can always be substituted for a

weaker one

Slide 6

Comparing specifications and procedures

We wish to compare procedures to specifications
Determine whether the procedure satisfies the specification
This indicates whether the implementer has succeeded

We wish to compare specifications to one another
Determine which specification (if either) is stronger
A procedure satisfying a stronger specification can be used

Slide 7

A procedure satisfying a stronger specification can be used
anywhere that a weaker specification is required

Three ways to compare (use whichever is most convenient)
1. By hand; examine each clause
2. Logical formulas representing the specification
3. Transition relations

Comparing by hand (comparison technique 1)

We can weaken a specification by
Making requires harder to satisfy (strengthening requires)

Preconditions: contravariant, all other clauses: covariant
Adding things to modifies clause (weakening modifies)
Making effects easier to satisfy (weakening effects)
Guaranteeing less about throws (weakening throws)
Guaranteeing less about returns value (weakening returns)

Slide 8

The strongest (most constraining) spec has the following:
requires clause: true
modifies clause: nothing
effects clause: false
throws clause: nothing
returns clause: false
(This particular spec is so strong as to be useless.)

Comparing logical formulas (comparison technique 2)

Specification S1 is stronger than S2 iff:

∀ P, (P satisfies S1) ⇒ (P satisfies S2)

If each specification is a logical formula, this is equivalent to:

S1 ⇒ S2

So, convert each spec to a formula (see following slides)

This specification:

// requires R

// modifiesM

Slide 9

// modifiesM

// effects E

is equivalent to this single logical formula:

R⇒ (E ∧ (nothing but M is modified))

What about throws and returns? Absorb them into effects.

Final result: S1 is stronger than S2 iff

(R1 ⇒ (E1 ∧ only-modifies-M1)) ⇒ (R2 ⇒ (E2 ∧ only-modifies-M2))

Convert spec to formula, step 1: absorb throws, returns

How to write a specification:
requires (unchanged)
modifies (unchanged)
throws
effects correspond to resulting "effects"
returns

Example (from java.util.ArrayList<T>):
// requires: true
// modifies: this[index]
// throws: IndexOutOfBoundsException if index < 0 || index ≥ size()

}

Slide 10

// throws: IndexOutOfBoundsException if index < 0 || index ≥ size()
// effects: thispost[index] = element
// returns: thispre[index]
T set(int index, T element)

Equivalent spec, after absorbing throws and returns into effects:
// requires: true
// modifies: this[index]
// effects: if index < 0 || index ≥ size() then throws IndexOutOfBoundsException
// else thispost[index] = element && returns thispre[index]
T set(int index, T element)

Convert spec to formula: eliminate requires, modifies

Single logical formula

requires ⇒ ((not-modified) ∧ effects)

“not-modified” preserves every field not in modifies clause

Logical fact: If precondition is false, formula is true

Recall: ∀x. x⇒ true; ∀x. false ⇒ x; (x⇒ y) ≡ (¬x ∨ y)

Example:

// requires: true

Slide 11

// requires: true

// modifies: this[index]

// effects: E
T set(int index, T element)

Result:

true ⇒ ((∀i≠index. thispre[i] = thispost[i]) ∧ E)

Transition relations (comparison technique 3)

Transition relation relates prestates to poststates

Contains all possible 〈input,output〉 pairs

Transition relation maps procedure arguments to results
int increment(int i) {

return i+1;

}

double mySqrt(double a) {

Slide 12

double mySqrt(double a) {

if (Random.nextBoolean())

return Math.sqrt(a);

else

return - Math.sqrt(a);

}

Specifications have transition relations, too

Contains just as much information as other forms of specification

Satisfaction via transition relations

A stronger specification has a smaller transition relation

Rule: P satisfies S iff P is a subset of S
(when both are viewed as transition relations)

Sqrt specification (Ssqrt)
// requires x is a perfect square
// returns positive or negative square root
int sqrt (int x)

Transition relation: 〈0,0〉, 〈1,1〉, 〈1,-1〉, 〈4,2〉, 〈4,-2〉, …

Slide 13

Transition relation: 〈0,0〉, 〈1,1〉, 〈1,-1〉, 〈4,2〉, 〈4,-2〉, …

Sqrt code (Psqrt)
int sqrt (int x) {

// … always returns positive square root
}

Transition relation: 〈0,0〉, 〈1,1〉, 〈4,2〉, …

Psqrt satisfies Ssqrt because Psqrt is a subset of Ssqrt

Beware transition relations in abbreviated form

“P satisfies S iff P is a subset of S” is a good rule
But it gives the wrong answer for transition relations in abbreviated form
(The transition relations we have seen so far are in abbreviated form!)

anyOdd specification (SanyOdd)
// requires x = 0
// returns any odd integer
int anyOdd (int x)

Abbreviated transition relation: 〈0,1〉, 〈0,3〉, 〈0,5〉, 〈0,7〉, …

anyOdd code (P)

Slide 14

anyOdd code (PanyOdd)
int anyOdd (int x) {

return 3;
}

Transition relation: 〈0,3〉, 〈1,3〉, 〈2,3〉, 〈3,3〉, …

The code satisfies the specification, but the rule says it does not
PanyOdd is not a subset of SanyOdd

because 〈1,3〉 is not in the specification’s transition relation

We will see two solutions to this problem

Satisfaction via full transition relations (option 1)

The transition relation should make explicit everything an implementation may do
Problem: abbreviated transition relation for S does not indicate all possibilities

anyOdd specification (SanyOdd): // same as before
// requires x = 0
// returns any odd integer
int anyOdd (int x)

Full transition relation: 〈0,1〉, 〈0,3〉, 〈0,5〉, 〈0,7〉, … // on previous slide
〈1, 0〉, 〈1, 1〉, 〈1, 2〉, …, 〈1, exception〉, 〈1, infinite loop〉, … // new
〈2, 0〉, 〈2, 1〉, 〈2, 2〉, …, 〈2, exception〉, 〈2, infinite loop〉, … // new

anyOdd code (PanyOdd) // same as before
int anyOdd (int x) {

Slide 15

anyOdd
int anyOdd (int x) {

return 3;
}

Transition relation: 〈0,3〉, 〈1,3〉, 〈2,3〉, 〈3,3〉, … // same as before

The rule “P satisfies S iff P is a subset of S” gives the right answer for full relations

Downside: writing the full transition relation is bulky and inconvenient
It’s more convenient to make the implicit notational assumption:

For elements not in the domain of S, any behavior is permitted.
(Recall that a relation maps a domain to a range.)

Satisfaction via abbreviated transition relations (option 2)

New rule: P satisfies S iff P | (Domain of S) is a subset of S
where “P | D” = “P restricted to the domain D”

i.e., remove from P all pairs whose first member is not in D
(recall that a relation maps a domain to a range)

anyOdd specification (SanyOdd)
// requires x = 0
// returns any odd integer
int anyOdd (int x)

Abbreviated transition relation: 〈0,1〉, 〈0,3〉, 〈0,5〉, 〈0,7〉, …

anyOdd code (P)

Slide 16

anyOdd code (PanyOdd)
int anyOdd (int x) {

return 3;
}

Transition relation: 〈0,3〉, 〈1,3〉, 〈2,3〉, 〈3,3〉, …

Domain of S = { 0 }

P | (domain of S) = 〈〈〈〈0,3〉〉〉〉, which is a subset of S, so P satisfies S

The new rule gives the right answer even for abbreviated transition relations
We’ll use this version of the notation in class

Abbreviated transition relations, summary

The abbreviated version of the transition relation can be

misleading

The true transition relation contains all the pairs

When doing comparisons

Use the expanded transition relation, or

Restrict the domain when comparing

Slide 17

Either approach makes the “smaller is stronger rule” work

Review: strength of a specification

A stronger specification is satisfied by fewer procedures

A stronger specification has

weaker preconditions (note contravariance)

stronger postcondition

fewer modifications

Advantage of this view: can be checked by hand

Slide 18

A stronger specification has a (logically) stronger formula

Advantage of this view: mechanizable in tools

A stronger specification has a smaller transition relation

Advantage of this view: captures intuition of “stronger =

smaller” (fewer choices)

Specification style

Typically have only one of effects and returns

A procedure has a side effect or is called for its value

Exception: return old value, as for HashMap.put

The point of a specification is to be helpful

Formalism helps, overformalism doesn't

A specification should be

Slide 19

A specification should be

coherent (not too many cases)

informative (bad example: HashMap.get)

strong enough (to do something useful, to make guarantees)

weak enough (to permit (efficient) implementation)

Checking preconditions

Checking preconditions

– makes an implementation more robust

– provides better feedback to the client

– avoids silent errors

A quality implementation checks preconditions whenever it

is inexpensive and convenient to do so

Slide 20

