
Understanding ADTs

Slide 1

The hard way

Start hacking

When something doesn't work, hack some more

How do you know it doesn't work?

Need to reproduce the errors your users experience

Apply caffeine liberally

Ways to get your design right

Slide 2

The easier way

Plan first (specs, system decomposition, tests, ...)

Less apparent progress upfront

Faster completion times

Better delivered product

Less frustration

The hard way

Make up some inputs

If it doesn't crash, ship it

When it fails in the field, attempt to debug

The easier way

Reason about possible behaviors and desired outcomes

Construct simple tests that exercise those behaviors

Ways to verify your code

Slide 3

Construct simple tests that exercise those behaviors

Another way that can be easy

Prove that the system does what you want

Rep invariants are preserved

Implementation satisfies specification

Proof can be formal or informal (we will be informal)

Complementary to testing

Goal: correct code

Verify that rep invariant is satisfied

Verify that the implementation satisfies the spec

Verify that client code behaves correctly

Assuming that the implementation is correct

Uses of reasoning

Slide 4

Exhaustive testing

Create every possible object of the type

Check rep invariant for each object

Problem: impractical

Limited testing

Choose representative objects of the type

Check rep invariant for each object

Goal: Demonstrate that rep invariant is satisfied

Slide 5

Check rep invariant for each object

Problem: did you choose well?

Reasoning

Prove that all objects of the type satisfy the rep invariant

Sometimes easier than testing, sometimes harder

Every good programmer uses it as appropriate

Make a new object

constructors

producers

Modify an existing object

mutators

observers, producers (why?)

All possible objects (and values) of a type

Slide 6

Limited number of operations, but infinitely many objects

Maybe infinitely many values as well

d = a.observer()c = a.mutator()b = producer(a)

a = constructor()

g = b.observer()f = b.mutator()e = producer(b)

Examples of making objects

Slide 7

g = b.observer()f = b.mutator()e = producer(b)

Infinitely many possibilities

We cannot perform a proof that considers each possibility case-by-case

Induction: technique for proving infinitely many facts

using finitely many proof steps

For constructors (“basis step”)

Prove the property holds on exit

For all other methods (“inductive step”)

Prove that if the property holds on entry, then it holds on

Solution: induction

Slide 8

exit

If the basis and industive steps are true:

There is no way to make an object for which the property

does not hold

Therefore, the property holds for all objects

ADT: the natural numbers (non-negative integers)

constructor: 0 (zero)

producer: succ (successor: succ(x) = x+1)

mutators: none

observers: value

Axioms:

1. succ(0) > 0

2. (succ(i) > succ(j)) ⇔ i > j

Inductive proof that x+1 > x

Slide 9

Goal: prove that for all natural numbers x, succ(x) > x

Possibilities for x:

1. x is 0

succ(0) > 0 axiom #1

2. x is succ(y) for some y

succ(y) > y assumption

succ(succ(y)) > succ(y) axiom #2

succ(x) > x def of x = succ(y)

1. Prove that rep invariant is satisfied

2. Prove that client code behaves correctly

(Assuming that the implementation is correct)

Outline for remainder of lecture

Slide 10

CharSet Abstraction

// Overview: CharSets are finite mutable sets of chars.
// effects: creates a fresh, empty CharSet
public CharSet ()

// modifies: this
// effects: thispost = thispre U {c}
public void insert (char c);

Slide 11

// modifies: this
// effects: thispost = thispre - {c}
public void delete (char c);

// returns: (c ∈ this)
public boolean member (char c);

// returns: cardinality of this
public int size ();

// Rep invariant: elts has no nulls and no duplicates

public CharSet () { // constructor

elts = new ArrayList <Character>();

}

public void delete (char c) {

elts.remove (new Character (c));

}

Implementation of CharSet

Slide 12

}

public void insert (char c) {

if (! member(c))

elts.add (new Character (c));

}

public boolean member (char c) {

return elts.contains (new Character (c));

}

Rep invariant: elts has no nulls and no duplicates

Base case:

Constructor sets elts to the empty ArrayList<Character>

This satisfies the rep invariant

Inductive step:

Proof of CharSet representation invariant

Slide 13

For each other operation:

Assume rep invariant holds before the operation

Prove rep invariant holds after the operation

Rep invariant: elts has no nulls and no duplicates

public boolean member (char c) {
return elts.contains (new Character (c));

}

contains doesn’t change elts, so neither does member.

Inductive step, member

Slide 14

contains doesn’t change elts, so neither does member.
Conclusion: rep invariant is preserved.

Why do we even need to check member?
After all, the specification says that it does not mutate set.

Reasoning must account for all possible arguments
It’s best not to involve the specific values in the proof

Rep invariant: elts has no nulls and no duplicates

public void delete (char c) {

elts.remove (new Character (c));

}

remove either leaves elts unchanged or removes element.

Inductive step, delete

Slide 15

remove either leaves elts unchanged or removes element.

Rep invariant can only be made false by adding elements.

Conclusion: rep invariant is preserved.

Rep invariant: elts has no nulls and no duplicates

public void insert (char c) {
if (! this.member(c))

elts.add (new Character (c));
}

Inductive step, insert

Slide 16

If c is in elts
pre
:

elts is unchanged
Therefore, rep invariant is preserved.

If c is not in elts
pre
:

new elt is not null or a duplicate
Therefore, rep invariant is preserved.

Inductive step must consider all possible changes to the rep

A possible source of changes: representation exposure

If the proof does not account for this, then the proof is

invalid

An important reason to protect the rep:

Compiler can help verify that there are no external changes

Reasoning about mutations to the rep

Slide 17

Induction on specification, not on code

Abstract values (e.g., specification fields) may differ from

concrete representation

Can ignore observers, since they do not affect abstract state

How do we know that?

Axioms

Induction for reasoning about uses of ADT’s

Slide 18

Axioms

specs of operations

axioms of types used in overview parts of specifications

// A LetterSet (case-insensitive char set) is a mutable finite set of characters.
// No LetterSet contains two chars with the same lower-case representation.

// effects: creates an empty LetterSet
public LetterSet ();

// Insert c if this contains no other char with same lower-case representation.
// modifies: this
// effects: this

post
= if (∃c1∈ this

pre
s.t. toLowerCase(c1) = toLowerCase(c)

// then this
pre

// else this
pre

U {c}
public void insert (char c);

Letter sets (case-insensitive character sets)

Slide 19

public void insert (char c);

// modifies: this
// effects: this

post
= this

pre
- {c}

public void delete (char c);

// returns: (c ∈ this)
public boolean member (char c);

// returns: |this|
public int size ();

Prove: |S| > 1 ⇒⇒⇒⇒ (∃∃∃∃c1, c2 ∈∈∈∈S [toLowerCase(c1) ≠≠≠≠ toLowerCase(c2)])

Two possibilities for how S was made: by the constructor, or by insert

Base case: S = { }, (S was made by the constructor):
property holds (vacuously true)

Inductive case (S was made by a call of the form “T.insert(c)”):
Assume: |T| > 1 ⇒ (∃c3,c4∈T [toLowerCase(c3) ≠ toLowerCase(c4)])

Show: |S| > 1 ⇒ (∃c1,c2 ∈S [toLowerCase(c1) ≠ toLowerCase(c2)])

where S = T.insert(c)

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c))

Goal: prove that LetterSet contains two different letters

Slide 20

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c))

then T else T U {c}”

The value for S came from the specification of insert, applied to T.insert(c):

public void insert (char c);

modifies: this

effects: this
post

= if (∃∃∃∃c1∈∈∈∈S s.t. toLowerCase(c1) = toLowerCase(c))

then this
pre

else this
pre
U {c}

(Inductive case is continued on the next slide.)

Goal (from previous slide):
Assume: |T| > 1 ⇒ (∃c3,c4∈T [toLowerCase(c3) ≠ toLowerCase(c4)])

Show: |S| > 1 ⇒ (∃c1, c2∈S [toLowerCase(c1) ≠ toLowerCase(c2)])

where S = T.insert(c)

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c))

then T else T U {c}”

Consider the two possibilities for S (from “if ... then T else T U {c}”):

1. If S = T, the theorem holds by induction hypothesis

Goal: prove that LetterSet contains two different letters.

Inductive case: S = T.insert(c)

Slide 21

1. If S = T, the theorem holds by induction hypothesis

The assumption above.

2. If S = T U {c}, there are three cases to consider:

|T| = 0: Vacuous case, since hypothesis of theorem (“|S| > 1”) is false

|T| ≥ 1: We know that T did not contain a char of toLowerCase(h),

so the theorem holds by the meaning of union

Bonus: |T| > 1: By inductive assumption, T contains different letters,

so by the meaning of union, T U {c} also contains different letters

Conclusion

The goal is correct code

A proof is a powerful mechanism for ensuring correctness

Formal reasoning is required if debugging is hard

Inductive proofs are the most effective in computer science

Types of proofs:

Slide 22

Verify that rep invariant is satisfied

Verify that the implementation satisfies the spec

Verify that client code behaves correctly

