
DebuggingDebugging

1

Ways to get your code right

Validation

Purpose is to uncover problems and increase confidence

Combination of reasoning and test

Debugging

Finding out why a program is not functioning as intendedFinding out why a program is not functioning as intended

Defensive programming

Programming with validation and debugging in mind

Testing ≠ debugging

test: reveals existence of problem

debug: pinpoint location+cause of problem

Ways to get your code right

Purpose is to uncover problems and increase confidence

Combination of reasoning and test

Finding out why a program is not functioning as intended

2

Finding out why a program is not functioning as intended

Programming with validation and debugging in mind

reveals existence of problem

pinpoint location+cause of problem

A bug – September 9, 1947September 9, 1947

3

A Bug’s Life

Defect – mistake committed by a human

Error – incorrect computation

Failure – visible error: program violates its specification

Debugging starts when a failure is observed

Unit testingUnit testing

Integration testing

In the field

A Bug’s Life

mistake committed by a human

incorrect computation

visible error: program violates its specification

Debugging starts when a failure is observed

4

Defense in depth

1. Make errors impossible

Java makes memory overwrite bugs impossible

2. Don’t introduce defects

Correctness: get things right the first time

3. Make errors immediately visible

Local visibility of errors: best to fail immediatelyLocal visibility of errors: best to fail immediately

Example: checkRep() routine to check representation invariants

4. Last resort is debugging

Needed when effect of bug is distant from cause

Design experiments to gain information about bug

- Fairly easy in a program with good modularity, representation hiding, specs,
unit tests etc.

- Much harder and more painstaking with a poor design, e.g., with rampant rep
exposure

Defense in depth

Java makes memory overwrite bugs impossible

Correctness: get things right the first time

Local visibility of errors: best to fail immediately

5

Local visibility of errors: best to fail immediately

Example: checkRep() routine to check representation invariants

Needed when effect of bug is distant from cause

to gain information about bug

Fairly easy in a program with good modularity, representation hiding, specs,

Much harder and more painstaking with a poor design, e.g., with rampant rep

First defense: Impossible by design

In the language

Java makes memory overwrite bugs impossible

In the protocols/libraries/modules

TCP/IP will guarantee that data is not reordered

BigInteger will guarantee that there will be no overflowBigInteger will guarantee that there will be no overflow

In self-imposed conventions

Hierarchical locking makes deadlock bugs impossible

Banning the use of recursion will make infinite recursion/insufficient
stack bugs go away

Immutable data structures will guarantee

Caution: You must maintain the discipline

First defense: Impossible by design

Java makes memory overwrite bugs impossible

In the protocols/libraries/modules

TCP/IP will guarantee that data is not reordered

BigInteger will guarantee that there will be no overflow

6

BigInteger will guarantee that there will be no overflow

imposed conventions

Hierarchical locking makes deadlock bugs impossible

Banning the use of recursion will make infinite recursion/insufficient

Immutable data structures will guarantee behavioral equality

Caution: You must maintain the discipline

Second defense: correctness

Get things right the first time
Don’t code before you think! Think before you code.

If you're making lots of easy-to
to-find bugs – don't use compiler as crutch

Especially true, when debugging is going to be hard

Concurrency

Difficult test and instrument environmentsDifficult test and instrument environments

Program must meet timing deadlines

Simplicity is key
Modularity

- Divide program into chunks that are easy to understand

- Use abstract data types with well

- Use defensive programming; avoid rep exposure

Specification

- Write specs for all modules, so that an explicit, well
exists between each module and its clients

Second defense: correctness

Don’t code before you think! Think before you code.

to-find bugs, you're also making hard-
don't use compiler as crutch

Especially true, when debugging is going to be hard

Difficult test and instrument environments

7

Difficult test and instrument environments

Program must meet timing deadlines

Divide program into chunks that are easy to understand

Use abstract data types with well-defined interfaces

Use defensive programming; avoid rep exposure

Write specs for all modules, so that an explicit, well-defined contract
exists between each module and its clients

Third defense: immediate visibility

If we can't prevent bugs, we can try to localize them to a
small part of the program

Assertions: catch bugs early, before failure has a chance
to contaminate (and be obscured by) further computation

Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless be confident that any bug you find is in that unit (unless
it's in the test driver)

Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

When localized to a single method or small module, bugs
can be found simply by studying the program text

Third defense: immediate visibility

If we can't prevent bugs, we can try to localize them to a

: catch bugs early, before failure has a chance
to contaminate (and be obscured by) further computation

: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless

8

be confident that any bug you find is in that unit (unless

: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

When localized to a single method or small module, bugs
can be found simply by studying the program text

Benefits of immediate visibility

Key difficulty of debugging is to find the code fragment
responsible for an observed problem

A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

The earlier a problem is observed, the easier it is to fixThe earlier a problem is observed, the easier it is to fix

For example, frequently checking the rep invariant helps
the above problem

General approach: fail-fast

Check invariants, don't just assume them

Don't try to recover from bugs

Benefits of immediate visibility

Key difficulty of debugging is to find the code fragment
responsible for an observed problem

A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

The earlier a problem is observed, the easier it is to fix

9

The earlier a problem is observed, the easier it is to fix

For example, frequently checking the rep invariant helps

Check invariants, don't just assume them

Don't try to recover from bugs – this just obscures them

How to debug a compiler

Multiple passes

Each operate on a complex IR

Lot of information passing

Very complex Rep Invariant

Code generation at the endCode generation at the end

Bugs

Compiler crashes ☺

Generated program is buggy �

RUN

How to debug a compiler

Each operate on a complex IR

Program

Front End

Intermediate

Representation

10

�

Optimization

Intermediate

Representation

Optimization

Intermediate

Representation

Code GenerationExecutableRUN

Don't hide bugs

// k is guaranteed to be present in a
int i = 0;

while (true) {

if (a[i]==k) break

i++;

}}

This code fragment searches an array

Value is guaranteed to be in the array.

If that guarantee is broken (by a bug), the code throws an
exception and dies.

Temptation: make code more “robust” by not failing

Don't hide bugs

// k is guaranteed to be present in a

break;

11

This code fragment searches an array a for a value k.

Value is guaranteed to be in the array.

If that guarantee is broken (by a bug), the code throws an

Temptation: make code more “robust” by not failing

Don't hide bugs

// k is guaranteed to be present in a
int i = 0;

while (i<a.length) {

if (a[i]==k) break

i++;

}}

Now at least the loop will always terminate

But no longer guaranteed that

If rest of code relies on this, then problems arise later

All we've done is obscure the link between the bug's origin
and the eventual erroneous behavior it causes.

Don't hide bugs

// k is guaranteed to be present in a

break;

12

Now at least the loop will always terminate

But no longer guaranteed that a[i]==k

If rest of code relies on this, then problems arise later

All we've done is obscure the link between the bug's origin
and the eventual erroneous behavior it causes.

Don't hide bugs

// k is guaranteed to be present in a
int i = 0;

while (i<a.length) {

if (a[i]==k) break

i++;

}}

assert (i<a.length) :

Assertions let us document and check invariants

Abort program as soon as problem is detected

Don't hide bugs

// k is guaranteed to be present in a

break;

13

"key not found";

Assertions let us document and check invariants

Abort program as soon as problem is detected

Inserting Checks

Insert checks galore with an intelligent checking strategy

Precondition checks

Consistency checks

Bug-specific checks

Goal: stop the program as close to bug as possibleGoal: stop the program as close to bug as possible

Use debugger to see where you are, explore program a bit

Inserting Checks

Insert checks galore with an intelligent checking strategy

Goal: stop the program as close to bug as possible

14

Goal: stop the program as close to bug as possible

Use debugger to see where you are, explore program a bit

Checking For Preconditions

// k is guaranteed to be present in a
int i = 0;

while (i<a.length

if (a[i]==k) break

i++;i++;

}

assert (i<a.length

Precondition violated? Get an assertion!

Checking For Preconditions

// k is guaranteed to be present in a

length) {

break;

15

length) : "key not found";

Precondition violated? Get an assertion!

Downside of Assertions

static int sum(Integer a[], List<Integer> index) {

int s = 0;

for (e:index) {

assert(e < a.length, “Precondition violated”);

s = s + a[e]; s = s + a[e];

}

return s;

}

Assertion not checked until we use the data

Fault occurs when bad index inserted into list

May be a long distance between fault activation and error detection

Downside of Assertions

sum(Integer a[], List<Integer> index) {

(e < a.length, “Precondition violated”);

16

Assertion not checked until we use the data

Fault occurs when bad index inserted into list

May be a long distance between fault activation and error detection

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {

for (e:index) {

assert(e < a.length, “Inconsistent Data Structure”);

}

} }

Perform check after all updates to minimize distance
between bug occurrence and bug detection

Can also write a single procedure to check ALL data
structures, then scatter calls to this procedure throughout
code

checkRep: Data Structure Consistency Checks

checkRep(Integer a[], List<Integer> index) {

(e < a.length, “Inconsistent Data Structure”);

17

Perform check after all updates to minimize distance
between bug occurrence and bug detection

Can also write a single procedure to check ALL data
structures, then scatter calls to this procedure throughout

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {

for (e:index) {

assert(e != 1234, “Inconsistent Data Structure”);

}

}}

Bug shows up as 1234 in list

Check for that specific condition

Specific Checks

check(Integer a[], List<Integer> index) {

(e != 1234, “Inconsistent Data Structure”);

18

Check for that specific condition

Checks In Production Code

Should you include assertions and checks in production code?

Yes: stop program if check fails
chance program will do something wrong

No: may need program to keep going, maybe bug does
not have such bad consequences

Correct answer depends on context!Correct answer depends on context!

Ariane 5 – program halted because of overflow in unused value,
exception thrown but not handled until top level, rocket crashes…

Checks In Production Code

Should you include assertions and checks in production code?

Yes: stop program if check fails - don’t want to take
chance program will do something wrong

No: may need program to keep going, maybe bug does
not have such bad consequences

Correct answer depends on context!

19

Correct answer depends on context!

program halted because of overflow in unused value,
exception thrown but not handled until top level, rocket crashes…

Regression testing

Whenever you find and fix a bug

Add a test for it

Re-run all your tests

Why this is a good idea

Often reintroduce old bugs while fixing new onesOften reintroduce old bugs while fixing new ones

Helps to populate test suite with good tests

If a bug happened once, it could well happen again

Run regression tests as frequently as you can afford to

Automate process

Make concise test sets, with few superfluous tests

Regression testing

Whenever you find and fix a bug

Often reintroduce old bugs while fixing new ones

20

Often reintroduce old bugs while fixing new ones

Helps to populate test suite with good tests

If a bug happened once, it could well happen again

Run regression tests as frequently as you can afford to

Make concise test sets, with few superfluous tests

Logging Events

Often you would like to have some indication of past when a
check fails

Design a logging infrastructure

Dump events to a file (strings)

Events have consistent format to enable efficient searches

Sometimes (usually for timing reasons) must keep lot in memory, Sometimes (usually for timing reasons) must keep lot in memory,
not on disk

Circular logs to avoid resource exhaustion

Important in debugging in customer environments

May not have access to the customer use

Only the log is available

Information on the log to help reproduce the bug

Logging Events

Often you would like to have some indication of past when a

Events have consistent format to enable efficient searches

Sometimes (usually for timing reasons) must keep lot in memory,

21

Sometimes (usually for timing reasons) must keep lot in memory,

Circular logs to avoid resource exhaustion

Important in debugging in customer environments

May not have access to the customer use

Information on the log to help reproduce the bug

Last resort: debugging

Bugs happen

Industry average: 10 bugs per 1000 lines of code (“kloc”)

Bugs that are not immediately localizable happen

Found during integration testing

Or reported by userOr reported by user

step 1 – Clarify symptom

step 2 – Find and understand cause, create test

step 3 – Fix

step 4 – Rerun all tests

Last resort: debugging

Industry average: 10 bugs per 1000 lines of code (“kloc”)

Bugs that are not immediately localizable happen

Found during integration testing

22

Find and understand cause, create test

Kinds of Bugs

Quick, easy bugs (few minutes)

Medium bugs (hours)

Hard bugs (small number of days)

Really Bad bugs (many days to never)

Look for bugs in this order!

Different debugging strategies for each

Kinds of Bugs

Quick, easy bugs (few minutes)

Hard bugs (small number of days)

Really Bad bugs (many days to never)

23

Look for bugs in this order!

Different debugging strategies for each

Finding Easy Bugs

Hope for a quick bug, take a first quick shot

Look at backtrace in the debugger

Look at code where you think there might be a problem,
maybe use a debugger or a few print statements in

Try to get lucky

Make the first shot quick! Don’t get sucked in!

Look for medium bug with next shot

Use print statements

Design an organized print strategy

Legible, easy to read error messages

Make the medium shot medium! Don’t get sucked in!

Finding Easy Bugs

Hope for a quick bug, take a first quick shot

Look at backtrace in the debugger

Look at code where you think there might be a problem,
maybe use a debugger or a few print statements in

24

Make the first shot quick! Don’t get sucked in!

Look for medium bug with next shot

Design an organized print strategy

Legible, easy to read error messages

Make the medium shot medium! Don’t get sucked in!

Tricks for Hard Bugs

Rebuild system from scratch and reboot

Explain bug to a friend

Make sure it is a bug – program may be working
correctly and you don’t realize it!

Minimize input required to exercise bugMinimize input required to exercise bug

Add checks to program

Minimize distance between error and detection

Use binary search to narrow down possible locations

Use logs to record events in history

Tricks for Hard Bugs

Rebuild system from scratch and reboot

program may be working
correctly and you don’t realize it!

Minimize input required to exercise bug

25

Minimize input required to exercise bug

Minimize distance between error and detection

Use binary search to narrow down possible locations

Use logs to record events in history

Reducing Input Size Example

boolean substr(String s, String b)

returns false for

s = “The wworld is ggreat! Liffe is wwonderful! I am so vvery
happy all of the ttime!”

b = “very happy”

even though “very happy” is a substring of s

Wrong approach: try to trace the execution of substr for this case

Right approach: try to reduce the size of the test case

Reducing Input Size Example

boolean substr(String s, String b)

s = “The wworld is ggreat! Liffe is wwonderful! I am so vvery

26

even though “very happy” is a substring of s

Wrong approach: try to trace the execution of substr for this case

Right approach: try to reduce the size of the test case

Reducing Input Size

substr(“I am so vvery happy all of the ttime!”, “very happy”) == false

substr(“very happy all of the ttime!”, “very happy”) == true

substr(“I am so vvery happy”, “very happy”) == false

substr(“I am so vvery happy”, “happy”) == true

substr(“I am so vvery happy”, “very”) == falsesubstr(“I am so vvery happy”, “very”) == false

substr(“I am so vvery happy”, “ve”) == false

substr(“vvery happy”, “ve”) == false

substr(“vvery happy”, “v”) == true

substr(“vvery”, “ve”) == false

substr(“vve”, “ve”) == false

substr(“ve”, “ve”) == true

Reducing Input Size

substr(“I am so vvery happy all of the ttime!”, “very happy”) == false

substr(“very happy all of the ttime!”, “very happy”) == true

substr(“I am so vvery happy”, “very happy”) == false

substr(“I am so vvery happy”, “happy”) == true

substr(“I am so vvery happy”, “very”) == false

27

substr(“I am so vvery happy”, “very”) == false

substr(“I am so vvery happy”, “ve”) == false

General strategy: simplify

In general: find simplest input that will provoke bug

Usually not the input that revealed existence of the bug

Start with data that revealed bug

Keep paring it down (binary search can help)

Often leads directly to an understanding of the causeOften leads directly to an understanding of the cause

When not dealing with simple method calls

Think of “test input” as the set of steps needed to reliably
trigger the bug

Same basic idea

General strategy: simplify

In general: find simplest input that will provoke bug

Usually not the input that revealed existence of the bug

Start with data that revealed bug

Keep paring it down (binary search can help)

Often leads directly to an understanding of the cause

28

Often leads directly to an understanding of the cause

When not dealing with simple method calls

Think of “test input” as the set of steps needed to reliably

Localizing a bug

Take advantage of modularity

Start with everything, take away pieces until bug goes

Start with nothing, add pieces back in until bug appears

Take advantage of modular reasoning

Trace through program, viewing intermediate resultsTrace through program, viewing intermediate results

Can use binary search to speed things up

Bug happens somewhere between first and last statement

So can do binary search on that ordered set of statements

Localizing a bug

Take advantage of modularity

Start with everything, take away pieces until bug goes

Start with nothing, add pieces back in until bug appears

Take advantage of modular reasoning

Trace through program, viewing intermediate results

29

Trace through program, viewing intermediate results

to speed things up

Bug happens somewhere between first and last statement

So can do binary search on that ordered set of statements

binary search on buggy code

public class MotionDetector {

private boolean first = true;

private Matrix prev = new Matrix();

public Point apply(Matrix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();Matrix motion = new Matrix();

getDifference(prev,current,motion

applyThreshold(motion,motion,10);

labelImage(motion,motion);

Hist hist = getHistogram(motion

int top = hist.getMostFrequent();

applyThreshold(motion,motion,top

Point result = getCentroid(motion

prev.copy(current);

return result;

}

}

binary search on buggy code

();

) { no problem yet

Check

30

motion);

,10);

motion);

();

top,top);

motion);

problem exists

Check
intermediate

result
at half-way

point

binary search on buggy code

public class MotionDetector {

private boolean first = true;

private Matrix prev = new Matrix();

public Point apply(Matrix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();Matrix motion = new Matrix();

getDifference(prev,current,motion

applyThreshold(motion,motion,10);

labelImage(motion,motion);

Hist hist = getHistogram(motion

int top = hist.getMostFrequent();

applyThreshold(motion,motion,top

Point result = getCentroid(motion

prev.copy(current);

return result;

}

}

binary search on buggy code

();

) { no problem yet

Check
intermediate

result

31

motion);

,10);

motion);

();

top,top);

motion);

problem exists

result
at half-way

point

Quickly home in
on bug in O(log n) time
by repeated subdivision

Binary Search in a Compiler

A B C

Front end

Optimization 1

Optimization 2

Optimization 3

B
in
a
ry
 s
e
a
rc
h

Optimization 3

Optimization 4

Optimization 5

Optimization 6

Code generation

Link and Run

Test

B
in
a
ry
 s
e
a
rc
h

Binary Search in a Compiler

Class

D E F G H I

Binary Search

32

Binary Search in a Compiler

A B C

Front end

Optimization 1

Optimization 2

Optimization 3Optimization 3

Optimization 4

Optimization 5

Optimization 6

Code generation

Link and Run

Test

Binary Search in a Compiler

Class

D E F G H I

33

Heisenbugs

Sequential, deterministic program

But the real world is not that nice…

Continuous input/environment changes

Timing dependencies

Concurrency and Parallelism

Bug occurs randomly

Hard to reproduce

Use of debugger or assertions �

Only happens when under heavy load

Only happens once in a while

Heisenbugs

Sequential, deterministic program – bug is repeatable

But the real world is not that nice…

Continuous input/environment changes

34

bug goes away

Only happens when under heavy load

Debugging In Harsh Environments

Harsh environments

Bug is nondeterministic, difficult to reproduce

Can’t print or use debugger

Can’t change timing of program (or bug has to do with timing)

Build an event log (circular buffer)Build an event log (circular buffer)

Log events during execution of program as it runs at speed

When detect error, stop program and examine logs

Debugging In Harsh Environments

Bug is nondeterministic, difficult to reproduce

Can’t change timing of program (or bug has to do with timing)

Build an event log (circular buffer)

35

Build an event log (circular buffer)

Log events during execution of program as it runs at speed

When detect error, stop program and examine logs

Where is the bug?

The bug is not where you think it is

Ask yourself where it cannot be; explain why

Look for stupid mistakes first, e.g.,

Reversed order of arguments: Collections.copy(src,dest)

Spelling of identifiers: int hashcode()Spelling of identifiers: int hashcode()

- @override can help catch method name typos

Same object vs. equal: a == b versus a.equals(b)

Failure to reinitialize a variable

Deep vs. shallow copy

Make sure that you have correct source code

Recompile everything

Where is the bug?

where you think it is

Ask yourself where it cannot be; explain why

Look for stupid mistakes first, e.g.,

Reversed order of arguments: Collections.copy(src,dest)

Spelling of identifiers: int hashcode()

36

Spelling of identifiers: int hashcode()

can help catch method name typos

Same object vs. equal: a == b versus a.equals(b)

Failure to reinitialize a variable

Make sure that you have correct source code

When the going gets tough

Reconsider assumptions

E.g., has the OS changed? Is there room on the hard drive?

Debug the code, not the comments

Start documenting your system

Gives a fresh angle, and highlights area of confusionGives a fresh angle, and highlights area of confusion

Get help

We all develop blind spots

Explaining the problem often helps

Walk away

Trade latency for efficiency

One good reason to start early

When the going gets tough

E.g., has the OS changed? Is there room on the hard drive?

Debug the code, not the comments

Start documenting your system

Gives a fresh angle, and highlights area of confusion

37

Gives a fresh angle, and highlights area of confusion

We all develop blind spots

Explaining the problem often helps

Trade latency for efficiency – sleep!

One good reason to start early

Detecting Bugs in the Real World

Real Systems are…

Large and complex (duh!)

Collection of modules, written by multiple people

Complex input

Many external interactions

Non-deterministic

Replication can be an issue

Infrequent bug

Instrumentation eliminates the bug

Bugs cross abstraction barriers

Large time lag from corruption to detection

Detecting Bugs in the Real World

Large and complex (duh!)

Collection of modules, written by multiple people

Many external interactions

38

Instrumentation eliminates the bug

Bugs cross abstraction barriers

Large time lag from corruption to detection

Key Concepts in Review

Testing and debugging are different

Testing reveals existence of bugs

Debugging pinpoints location of bugs

Goal is to get program to work

Not to find bugsNot to find bugs

Debugging should be a systematic process

Use the “scientific method”

It’s important to understand source of bugs

To decide on appropriate repair

Key Concepts in Review

Testing and debugging are different

Testing reveals existence of bugs

Debugging pinpoints location of bugs

Goal is to get program to work

39

Debugging should be a systematic process

Use the “scientific method”

It’s important to understand source of bugs

To decide on appropriate repair

