" Covers through Yersion 2.0 OMG UML Standard e

UML DISTILLED

THIRD EDITION

A Brier GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

UNIFIED o

MODELING
LANGLAGE

MARTIN FOWLER

Design and UML Class Diagrams

Suggested reading:

Practical UML: A hands on introduction for developers
http://dn.codegear.com/article/31863

UML Distilled Ch. 3, by M. Fowler

Big questions

= What is UML?
= Why should | bother? Do people really use UML?

= What is a UML class diagram?
= What kind of information goes into it?
= How do | create it?
= When should I create it?

Design phase

= design: specifying the structure of how a
software system will be written and function,
without actually writing the complete
Implementation

= a transition from "what" the system must do,
to "how" the system will do it

= What classes will we need to implement a system
that meets our requirements?

= What fields and methods will each class have?
= How will the classes interact with each other?

How do we design classes?

= class identification from project spec / requirements
= Nhouns are potential classes, objects, fields
= verbs are potential methods or responsibilities of a class

= CRC card exercises
= Wwrite down classes' names on index cards

= hext to each class, list the following:
responsibilities: problems to be solved; short verb phrases

collaborators: other classes that are sent messages by this class
(asymmetric)

= UML diagrams

Cystomer
= class diagrams (today) Pl oot Order
= Sequence diagrams how: Pl
Lo (Number
" ... o mef.;

UML

In an effort to promote Object Oriented designs, three leading
object oriented programming researchers joined ranks to
combine their languages:

= Grady Booch (BOOCH)
= Jim Rumbaugh (OML: object modeling technique)
= lvar Jacobsen (OOSE: object oriented software eng)

and come up with an industry standard [mid 1990's].

UML — Unified Modeling Language

= The result is large (as one might expect)

= Union of all Modeling Languages

Use case diagrams
Class diagrams

Object diagrams
Sequence diagrams
Collaboration diagrams
Statechart diagrams
Activity diagrams
Component diagrams
Deployment diagrams

= But It's a nice standard that has been embraced
by the industry.

Introduction to UML

= UML: pictures of an OO system

= programming languages are not abstract enough for OO design
= UML is an open standard; lots of companies use it

= What is legal UML?

= a descriptive language: rigid formal syntax (like programming)
= a prescriptive language: shaped by usage and convention

= It's okay to omit things from UML diagrams if they aren't
needed by team/supervisor/instructor

Uses for UML

as a sketch: to communicate aspects of system

= forward design: doing UML before coding

= backward design: doing UML after coding as documentation
=« often done on whiteboard or paper

= used to get rough selective ideas

as a blueprint: a complete design to be implemented

= sometimes done with CASE (Computer-Aided Software
Engineering) tools

as a programming language: with the right tools, code
can be auto-generated and executed from UML
= only good if this is faster than coding in a "real" language

UML class diagrams

= What is a UML class diagram?

= UML class diagram: a picture of
= the classes in an OO system
= their fields and methods
= connections between the classes
= that interact or inherit from each other

= What are some things that are not represented in a
UML class diagram?

= details of how the classes interact with each other

= algorithmic details; how a particular behavior is
Implemented

Diagram of one class

= class name in top of box
= Write <<interface>> on top of interfaces' names
= Use italics for an abstract class name

Rectangle
. . - wyiclth: it
= attributes (optional) - height: irt
= should include all fields of the object fares: double
+ Rectangle(width: int, height: int)
+ distancelr: Rectangle): double

= operations / methods (optional)

= Mmay omit trivial (get/set) methods Student
but don't omit any methods from an interface!

Hame: String
= Should not include inherited methods Gdint

total Stude nt=int

#oetiDiTint

+getMam e String

~getE mail Address{ T String
+i3et T otal Students(int

10

Class attributes

attributes (fields, instance variables)

visibility name : type [count] = default value

visibility: + public __Rectangle
protected - wicth:
- prlvate - hEIgf-'f[. it
Farea: doubkle
~ pac_kage (default) + Rectangle(width: int, height: int)
/ derived

+ distancelr: Rectangle): double

underline static attributes

derived attribute: not stored, but can
be computed from other attribute values

attribute example:
- balance : double = 0.00

Student

Hame: String
4d:int
{otal Stude ntsint

#oetiDiTint
+getMam e String

+0et T otal Studentstint

~getE mail Address{ T String

11

Class operations / methods

= operations / methods

visibility name (parameters) : return_type

visibility: + public
protected
- private
~ package (default)

underline static methods
parameter types listed as (name: type)

omit return_type on constructors and
when return type is void

method example:
+ distance(pl: Point, p2: Point): double

Rectangle

- wyicth: it
- height: int
Iarea: double

+ Rectangle(width: int, height: int)
+ distancelr: Rectangle): double

Student

Hame: String
4d:int
{otal Stude ntsint

#oetiDiTint
+getMam e String

+0et T otal Studentstint

~getE mail Address{ T String

12

Comments

= represented as a folded note, attached to the
appropriate class/method/etc by a dashed line

ArraylList

_loneahle is a
“tagging” interface
with no methocls.
The clone() method
i< defined in the

d0bject class.

«interface»
Clonheable

13

Relationships btwn. classes

= generalization: an inheritance relationship
= Inheritance between classes
= Interface implementation

= associlation: a usage relationship
= dependency
= aggregation
= composition

14

Generalization relationships

= generalization (inheritance) relationships

= hierarchies drawn top-down with arrows
pointing upward to parent

= line/arrow styles differ, based on whether
parent is a(n):
class:
solid line, black arrow

abstract class:
solid line, white arrow

interface:
dashed line, white arrow

= we often don't draw trivial / obvious
generalization relationships, such as
drawing the Object class as a parent

«interface»
Shape

+ getdreal): double
o
|
|
|
1

RectanguiarShape
- wyictth: int
- height: int
Farea: double
Rectangular=hape(width: int, height: int)
+ cohtainsip: Paint); boolean
+ getireal) double

Rectangle

-t
-y ind

+ Rectangle(x: int, v int, width: ivt, height: int)
+ containz(p: Point): boolean
+ diztancelr: Rectangle): double

15

Assoclational relationships

= associational (usage) relationships

1. multiplicity (how many are used)
* = 0, 1, or more
1 = 1 exactly

2..4 = between 2 and 4, inclusive
3..* = 3 or more

2. name (what relationship the objects have)
3. navigability (direction) o

Class A 1.° K Class B
contalne

2

Multiplicity of associations

= one-to-one

= each student must carry exactly one ID card

Student

—

carries

IDCard

- hatme: String

- idCard: IDCard

= one-to-many

= one rectangle list can contain

Rectangle

- it
-y int

+ Rectangle(x: int, v int, width: int, height: int)
+ contains(p: Point); hoolean
+ distance(r. Rectangle): double

- id: int
- paz=yweard: String

cortsins

many rectangles

RectangleList

- list: Arraylist

+ add(r: Eectangle)
+ clear()

17

Car

Assoclation types

1Y ™—
:) aggregation

= aggregation: "is part of" L1

= symbolized by a clear white diamond Engine
= composition: "is entirely made of" ook

= stronger version of aggregation composition

= the parts live and die with the whole T 1

= symbolized by a black diamond *T

Page

= dependency: "uses temporarily"
= symbolized by dotted line

= often is an implementation
detail, not an intrinsic part of dependency

that object’s state \
LOttery EEEEEEEEEEER Random
Ticket

18

Composition/aggregation example

whole

»>

MovieTheater

1

il

BoxOffice

"~

compasition

0.*

0.*

Tk»- aggregation

Movie

<— part

If the movie theatre goes away
so does the box office => composition
but movies may still exist => aggregation

+— part

Class diagram example

Aggregation —
Order class

w— __— contains

4!

OrderDetall
classes. Could

17« mip@igomposition?

Customer No arrows; info can Order
flow in both directions
narme 1 0.* | date
address ;\ status
association -\'-, caleTax
' calcTotal
—% Pavment *
abstract class— Y 1 Iz 1 calcTotaleight
amaunt
role name—
generalization __ > -\'i
line iterm
| OrderDetail
Credit Cash Check ,
quantity
nurmber cashTendered | | name taxstatus
fype banklD
expDate calcsubTotal
authorized calckieight

authorized

tem < class name
1 Shlpp!nngght attributes
description
f/ getPriceF orQuantity
| getieight + operations

navigability

UML example: people

Person Address
Name S’Freet
Phone Number 0.1 livesat 1|t
Email Address = State
Postal Code
Purchase Parking Pass Country
f Validate
Qutput As Label
Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Let’'s add the visibility attributes

Class diagram: voters

TheMotingProgram
Yater Authentication YoterPersonalldentification
vioterPersonalinfo: YoterPersonallnformation LvoterLastilame: String
voterlD: String LvoterFirsthlame: String

vioterPassword: securePi

BallotCrestion
ballathame: String
candidates: String [];

dizplayBallat]): woid
createBalloti) void

this 1z only a small
subset of the actual
Hackace .

Svotertdiddlerame: String
-votersSh String

Lvoter &ddresst: String
Lvoter Addressl String
-voterCity: String
Lvoterstate: String
Fvoter ZIP: String

Hyalidate ZipCodevoter ZIP: String) String

HyalidateState parameterDhoterState: String) St

secLurePny

(O PWEntered: JPasswordFisld

‘= securePWITFYY: securePYWI securePYy

22

Class diagram example:

video store

-

Customer

/ Multiplicity]
1 Simple

Abstract
Class

" Rental Item

Aggregation

Rental Invoice

Generalization i:

Composition

0.1

N

Simple
Association

J

DVD Movie

VHS Movie

Video Game

Checkout Screen

23

Class diagram example: student

StudentBody

+ main (args : String[])

Address

- streetAddress : String
- city : String

- state : String

- zipCode : long

+ toString() : String

100

Student

- firstName : String

- lastName : String

- homeAddress : Address
- schoolAddress : Address

+ toString() : String

24

Tools for creating UML diags.

= Violet (free)
= http://horstmann.com/violet/

= Rational Rose
= http://www.rational.com/

= Visual Paradigm UML Suite (trial)
= http://www.visual-paradigm.com/

= (nearly) direct download link:
http://www.visual-paradigm.com/vp/download.jsp?product=vpumli&edition=ce

(there are many others, but most are commercial)

25

Class design exercise

= Consider this Texas Hold '‘em poker game system:
= 2 to 8 human or computer players
= Each player has a name and stack of chips
= Computer players have a difficulty setting: easy, medium, hard

= Summary of each hand:

Dealer collects ante from appropriate players, shuffles the deck,
and deals each player a hand of 2 cards from the deck.

A betting round occurs, followed by dealing 3 shared cards from
the deck.

As shared cards are dealt, more betting rounds occur, where each
player can fold, check, or raise.

At the end of a round, if more than one player is remaining,
players' hands are compared, and the best hand wins the pot of all
chips bet so far.

= What classes are in this system? What are their
responsibilities? Which classes collaborate?

= Draw a class diagram for this system. Include relationships
between classes (generalization and associational). 26

27

Covers through Yersion 200 0OMG UML Standard

UML DISTILLED

THIRD EDITION

A Brier GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

MARTIN FOWLER

CSE 403

UML Sequence Diagrams

Suggested reading:
UML Distilled Ch. 4, by M. Fowler

Cy

28

UML seguence diagrams

= Sequence diagram: an "interaction diagram" that
models a single scenario executing Iin the system
= perhaps 2nd most used UML diagram (behind class diagram)

= relation of UML diagrams to other exercises:
= CRC cards -> class diagram
= USe cases -> sequence diagrams

29

Key parts of a seqguence diag.

= participant: an object or entity that acts in the

seqguence diagram

= Sequence diagram starts with an unattached "found message"
arrow

= Mmessage: communication between participant objects

= the axes In a sequence diagram:
= horizontal: which object/participant is acting
= Vvertical: time (down -> forward in time)

30

Sequence dg. from use case
X HO HO O O

Basic Course 1: Customer 2: Search Page 3: Search Results Page 4: Catalog 9: Search Results

ot oot SeachPape | onsearch)
and then presses the Search D =

|

|

I

I

I

|

|

I

|

I

|

|

button.

The system validates
the Customer's search criteria.

The system searches the Catalog
for books associated with the

specified author,

searchByAuthor()

Y
e

I
|
|
|
|
|
|
u
I
|
I
I
|
|
|
|

I
I
|
|
validateSearchCriterial) |
I
t
|
|

When the search is complete, the
system displays the search results
on the Search Results Page.

Mlternate Course

I

0

I

I

I

I{

I

I

I I

I displayErrorMessagel() |
If the Customer did not enfer the I
name of an author before pressing I_I(I
the Search button, the system displays | |
an errar message to that effect and | | |

I I

prompls the Customer to re-enter an
author name.

Representing objects

= Sqguares with object type, optionally preceded by object
name and colon

= write object’'s name if it clarifies the diagram
= Object's "life line" represented by dashed vert. line

ous _xof
opect AN et s

O nblzﬂ uﬂwﬂw
Smith:Patient Patient '

%

@
=2
>

>
S
z
o

Name syntax: <objectname>:<classname> 2

Messages between objects

= message (method call) indicated by horizontal
arrow to other object

= Write message name and arguments above arrow

‘Hospital

Admit (patientlD, roomType)

<

33

Messages, continued

= message (method call) indicated by horizontal

arrow to other object
= dashed arrow back indicates return

s different arrowheads for normal / concurrent
(asynchronous) methods

Messages

:Controller \
-Controller g CO

1
—] i P
T] | \ I—P\Q
piroe E: _____
W 'D'E o
fa¥ flo - i %
n
| Controller | etV

34

Lifetime of objects

= creation: arrow with 'new’
written above it

= Notice that an object created
after the start of the scenario
appears lower than the
others

s deletion: an X at bottom of
object's lifeline

= Java doesn't explicitly delete
objects; they fall out of
scope and are garbage-
collected

a Handler

query database

il

new a Query
Command

a Database
Statement

deletion
from other
object

creation

=
2
@©
]
e
T

g

results

|

extract results
|:| close E | :
"" self-deletion

S V4
results

35

Indicating method calls

= activation: thick box over object’s life line; drawn
when object's method is on the stack

= either that object is running its code, or it is on the stack
waiting for another object's method to finish

= nhest to indicate recursion

Activation - -
‘Controller
|
| |
ﬁ -
{_ I — Nesting]

< - ---Y

Pi":ir I 36

Indicating selection and loops

= frame: box around part of a sequence diagram to indicate
selection or loop

= If -=> (opt) [condition]
s 1f/else -> (alt) [condition], separated by horizontal dashed line
= loop -> (loop) [condition or items to loop over]
Order nbutor | | Disvibwor | | Messener
dispatch_ | | | |
il | | |
loop J [for each line item] | |
] | | |
operator alt) value > $10000] | | frame |
dispatch - | ‘ |
7] | |
--------------------- L |
[else] | ‘ |
disp_atch . ‘ |
guard | IU |
| | |
opt [needsConfirmation] | confirm ‘ _ |
I | | i
| | |
[[[

linking sequence diagrams

If one sequence diagram is too large or refers to another diagram,
indicate it with either:

= an unfinished arrow and comment
= a''ref' frame that names the other diagram
= when would this occur in our system?

Customer Info

Diag

ram |

ref)

Approved?

\
\
\
\
\
\
L
\
\
\
\
\
\
\
_/
"\
\
\
\
\
\
\
\
|

Verify customer credit

obl:C

\
\
[
|
\
\
\
\
\
[
[
\
\
\
\
[
\
[
\
\
\
\
\
[

1

[x<0] bar(x)
—_—

The flow

continues in

Diagram 2.

Diagram 2

ob3:C3

ob4:C4

bar(x) | _

—_—

doit{w)

The flaw

originates in

Diagram 1.

- — — — —

38

Example sequence diagram

sd Example J

StoreFront art Inventory

I I I
| | |
| | |
I I I
| | |
loop) o Addltem | |
‘ Reserveltem |

il
|
I |
T | |
- Checkout | |
: |
— |
! ProcessOrder \
ConfirmOrder }
|
T J |
|
; PlaceltemInOrder

| L U

| |

[

39

Forms of system control

= What can you say about the control flow of each of the
following systems?

calculatePrice |
P -

Is it centralized?
Is it distributed?

gl

gl

eeeeeee

l_}l |

vl
v |

an Order an Order Line aProduct aCustomer

calculatePrice | | | parameter |
calculatePrice ‘ | ‘
getPrice(quantity: number) ‘
‘
‘ getDiscountedValue (an Order) ‘
|

| getBasevalue |

[r | return

40

Why not just code it?

= Seguence diagrams can be somewhat close to the code
level. So why not just code up that algorithm rather
than drawing it as a sequence diagram?

= a good sequence diagram is still a bit above the level
of the real code (not all code is drawn on diagram)

= Seqguence diagrams are language-agnostic (can be
Implemented in many different languages

= hon-coders can do sequence diagrams
= easler to do sequence diagrams as a team

= can see many objects/classes at a time on same
page (visual bandwidth)

41

Sequence diagram exercise 1

= Let's do a sequence diagram for the following casual
use case, Start New Poker Round :

The scenario begins when the player chooses to start a new
round in the Ul. The Ul asks whether any new players want to
join the round; if so, the new players are added using the UI.

All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies an ante bet of
the proper amount. Next each player is dealt a hand of two
cards from the deck in a round-robin fashion; one card to each
player, then the second card.

If the player left of the dealer doesn't have enough money to
ante, he/she is removed from the game, and the next player
supplies the ante. If that player also cannot afford the ante,

this cycle continues until such a player is found or all players
are removed.

42

Sequence diagram exercise 2

= Let's do a sequence diagram for the following casual

use case, Add Calendar Appointment :

The scenario begins when the user chooses to add a new
appointment in the Ul. The Ul notices which part of the calendar is
active and pops up an Add Appointment window for that date and
time.

The user enters the necessary information about the appointment’s
name, location, start and end times. The Ul will prevent the user from
entering an appointment that has invalid information, such as an
empty name or negative duration. The calendar records the new
appointment in the user's list of appointments. Any reminder selected
by the user is added to the list of reminders.

If the user already has an appointment at that time, the user is
shown a warning message and asked to choose an available time or
replace the previous appointment. If the user enters an appointment
with the same name and duration as an existing group meeting, the
calendar asks the user whether he/she intended to join that group
meeting instead. If so, the user is added to that group meeting's list
of participants. 43

44

