
Design and UML Class Diagrams

Suggested reading:

Practical UML: A hands on introduction for developers
http://dn.codegear.com/article/31863

1

http://dn.codegear.com/article/31863

UML Distilled Ch. 3, by M. Fowler

Big questions

What is UML?
Wh h ld I b th ? D l ll UML?Why should I bother? Do people really use UML?

What is a UML class diagram?What is a UML class diagram?
What kind of information goes into it?
How do I create it?How do I create it?
When should I create it?

2

Design phase

design: specifying the structure of how a
software system will be written and function software system will be written and function,
without actually writing the complete
implementation

a transition from "what" the system must do,
t "h " th t ill d itto "how" the system will do it

What classes will we need to implement a system
that meets our requirements?q
What fields and methods will each class have?
How will the classes interact with each other?

3

How do we design classes?

class identification from project spec / requirements
nouns are potential classes, objects, fieldsp , j ,
verbs are potential methods or responsibilities of a class

CRC card exercises
write down classes' names on index cards
next to each class, list the following:

responsibilities: problems to be solved; short verb phrases
collaborators: other classes that are sent messages by this class
(asymmetric)

UML diagramsUML diagrams
class diagrams (today)
sequence diagrams

4

...

UML
In an effort to promote Object Oriented designs, three leading

object oriented programming researchers joined ranks toobject oriented programming researchers joined ranks to
combine their languages:

Grady Booch (BOOCH)
Jim Rumbaugh (OML: object modeling technique)
Ivar Jacobsen (OOSE: object oriented software eng)a Jacobse (OOS object o e ted so t a e e g)

and come up with an industry standard [mid 1990’s].

UML – Unified Modeling LanguageU U ed ode g a guage
The result is large (as one might expect)

Union of all Modeling LanguagesUnion of all Modeling Languages
Use case diagrams
Class diagrams
Object diagramsObject diagrams
Sequence diagrams
Collaboration diagrams
Statechart diagramsg
Activity diagrams
Component diagrams
Deployment diagrams
….

But it’s a nice standard that has been embraced
by the industryby the industry.

Introduction to UML

UML: pictures of an OO system
programming languages are not abstract enough for OO designprogramming languages are not abstract enough for OO design
UML is an open standard; lots of companies use it

What is legal UML?
a descriptive language: rigid formal syntax (like programming)
a prescriptive language: shaped by usage and conventiona prescriptive language: shaped by usage and convention
it's okay to omit things from UML diagrams if they aren't
needed by team/supervisor/instructor

7

Uses for UML

as a sketch: to communicate aspects of system
forward design: doing UML before codingforward design: doing UML before coding
backward design: doing UML after coding as documentation
often done on whiteboard or paper

d h l i idused to get rough selective ideas

as a blueprint: a complete design to be implementedas a blueprint: a complete design to be implemented
sometimes done with CASE (Computer-Aided Software
Engineering) tools

as a programming language: with the right tools, code
can be auto-generated and executed from UML

8

can be auto generated and executed from UML
only good if this is faster than coding in a "real" language

UML class diagrams

What is a UML class diagram?

l di i fUML class diagram: a picture of
the classes in an OO system
their fields and methods
connections between the classes

that interact or inherit from each other

What are some things that are not represented in a
UML class diagram?

details of how the classes interact with each other
algorithmic details; how a particular behavior is
implemented

9

p

Diagram of one class
class name in top of box

write <<interface>> on top of interfaces' namesp
use italics for an abstract class name

attributes (optional)attributes (optional)
should include all fields of the object

operations / methods (optional)operations / methods (optional)
may omit trivial (get/set) methods

but don't omit any methods from an interface!

should not include inherited methodsshould not include inherited methods

10

Class attributes
attributes (fields, instance variables)

visibility name : type [count] = default_valuey yp [] _

visibility: + public
protected
- private
~ package (default)
/ derived

underline static attributesunderline static attributes

derived attribute: not stored, but can
be computed from other attribute valuesbe computed from other attribute values

attribute example:
- balance : double = 0.00

11

balance : double 0.00

Class operations / methods
operations / methods

visibility name (parameters) : return_typey (p) _ yp

visibility: + public
protected
- private
~ package (default)

underline static methods
t t li t d (t)parameter types listed as (name: type)

omit return_type on constructors and
when return type is void

method example:
+ distance(p1: Point, p2: Point): double

12

Comments

represented as a folded note, attached to the
appropriate class/method/etc by a dashed lineappropriate class/method/etc by a dashed line

13

Relationships btwn. classes

generalization: an inheritance relationship
inheritance between classesinheritance between classes
interface implementation

association: a usage relationship
dependency
aggregationaggregation
composition

14

Generalization relationships
generalization (inheritance) relationships

hierarchies drawn top-down with arrows p
pointing upward to parent
line/arrow styles differ, based on whether
parent is a(n):

class:
solid line, black arrow
abstract class:
solid line white arrowsolid line, white arrow
interface:
dashed line, white arrow

we often don't draw trivial / obvious
generalization relationships, such as
drawing the Object class as a parent

15

Associational relationships

associational (usage) relationships
1 multiplicity (how many are used)1. multiplicity (how many are used)

* ⇒ 0, 1, or more
1 ⇒ 1 exactly
2..4 ⇒ between 2 and 4, inclusive,
3..* ⇒ 3 or more

2. name (what relationship the objects have)

3. navigability (direction)3. navigability (direction)

16

Multiplicity of associations

one-to-one
each student must carry exactly one ID cardeach student must carry exactly one ID card

one-to-manyy
one rectangle list can contain many rectangles

17

Association types
1

Car

aggregation: "is part of"
symbolized by a clear white diamond

1
1

aggregation

Enginey y

composition: "is entirely made of"
t i f ti

Book

stronger version of aggregation
the parts live and die with the whole
symbolized by a black diamond

composition

*
1

dependency: "uses temporarily"
symbolized by dotted line

Page

symbolized by dotted line
often is an implementation
detail, not an intrinsic part of
that object's state

dependency

18

Lottery
Ticket

Random

Composition/aggregation exampleCo pos t o /agg egat o e a p e

If the movie theatre goes away
so does the box office => composition
but movies may still exist => aggregation

Class diagram example
No arrows; info can
flow in both directions

Aggregation –
Order classOrder class
contains
OrderDetail
l C ldclasses. Could

be composition?

UML example: people

L t’ dd th i ibilit tt ib t
CSE 403,

Spring 2008,
Alverson

Let’s add the visibility attributes

Class diagram: voters

22

Class diagram example:
video storevideo store

Multiplicity

Customer 1
Class

Simple

Aggregation

Rental Item

Rental Invoice

1..*

Abstract

Class

Rental Item
1 0..1

Simple

AssociationGeneralization
Composition

DVD Movie VHS Movie Video Game
Checkout Screen

Association

23

Class diagram example: student

StudentBody
1 100

Student
fi tN St i

+ main (args : String[])
- firstName : String
- lastName : String
- homeAddress : Address
- schoolAddress : Address

+ toString() : String

- streetAddress : String

Address
streetAddress : String

- city : String
- state : String
- zipCode : long

24

+ toString() : String

Tools for creating UML diags.

Violet (free)
http://horstmann com/violet/http://horstmann.com/violet/

Rational Rose
http://www.rational.com/

Visual Paradigm UML Suite (trial)Visual Paradigm UML Suite (trial)
http://www.visual-paradigm.com/
(nearly) direct download link:
http://www visual paradigm com/vp/download jsp?product vpuml&edition cehttp://www.visual-paradigm.com/vp/download.jsp?product=vpuml&edition=ce

(there are many others, but most are commercial)

25

Class design exercise

Consider this Texas Hold 'em poker game system:
2 to 8 human or computer playersp p y
Each player has a name and stack of chips
Computer players have a difficulty setting: easy, medium, hard
Summary of each hand:Summary of each hand:

Dealer collects ante from appropriate players, shuffles the deck,
and deals each player a hand of 2 cards from the deck.
A betting round occurs, followed by dealing 3 shared cards from
th d kthe deck.
As shared cards are dealt, more betting rounds occur, where each
player can fold, check, or raise.
At the end of a round, if more than one player is remaining, At the end of a round, if more than one player is remaining,
players' hands are compared, and the best hand wins the pot of all
chips bet so far.

What classes are in this system? What are their

26

y
responsibilities? Which classes collaborate?
Draw a class diagram for this system. Include relationships
between classes (generalization and associational).

27

CSE 403CSE 403

UML Sequence Diagrams

Suggested reading:
UML Distilled Ch 4 by M FowlerUML Distilled Ch. 4, by M. Fowler

28

UML sequence diagrams

sequence diagram: an "interaction diagram" that
models a single scenario executing in the systemmodels a single scenario executing in the system

perhaps 2nd most used UML diagram (behind class diagram)

relation of UML diagrams to other exercises:
CRC cards -> class diagram
use cases -> sequence diagramsuse cases -> sequence diagrams

29

Key parts of a sequence diag.

participant: an object or entity that acts in the
sequence diagramsequence diagram

sequence diagram starts with an unattached "found message"
arrow

message: communication between participant objects

the axes in a sequence diagram:
horizontal: which object/participant is acting
vertical: time (down > forward in time)vertical: time (down -> forward in time)

30

Sequence dg. from use case

31

Representing objects

Squares with object type, optionally preceded by object
name and colon

write object's name if it clarifies the diagram
object's "life line" represented by dashed vert. line

32

Messages between objects

message (method call) indicated by horizontal
arrow to other objectarrow to other object

write message name and arguments above arrow

33

Messages, continued

message (method call) indicated by horizontal
arrow to other objectarrow to other object

dashed arrow back indicates return
different arrowheads for normal / concurrent
(asynchronous) methods

34

Lifetime of objects

creation: arrow with 'new'
written above itwritten above it

notice that an object created
after the start of the scenario
appears lower than the appears lower than the
others

d l ti X t b tt f deletion: an X at bottom of
object's lifeline

Java doesn't explicitly delete
objects; they fall out of
scope and are garbage-
collected

35

Indicating method calls

activation: thick box over object's life line; drawn
when object's method is on the stackwhen object s method is on the stack

either that object is running its code, or it is on the stack
waiting for another object's method to finish
nest to indicate recursionnest to indicate recursion

Activation

Nesting

36

Indicating selection and loops
frame: box around part of a sequence diagram to indicate
selection or loop

if > (opt) [condition]if -> (opt) [condition]
if/else -> (alt) [condition], separated by horizontal dashed line
loop -> (loop) [condition or items to loop over]

37

linking sequence diagrams
if one sequence diagram is too large or refers to another diagram,
indicate it with either:

an unfinished arrow and comment
a "ref" frame that names the other diagram
when would this occur in our system?

refCustomer Info

Verify customer credit

Approved?

38

Example sequence diagram

39

Forms of system control

What can you say about the control flow of each of the
following systems?g y

Is it centralized?
Is it distributed?

40

Why not just code it?

Sequence diagrams can be somewhat close to the code
level So why not just code up that algorithm rather level. So why not just code up that algorithm rather
than drawing it as a sequence diagram?

a good sequence diagram is still a bit above the level
of the real code (not all code is drawn on diagram)of the real code (not all code is drawn on diagram)
sequence diagrams are language-agnostic (can be
implemented in many different languages
non-coders can do sequence diagrams
easier to do sequence diagrams as a team
can see many objects/classes at a time on same

41

can see many objects/classes at a time on same
page (visual bandwidth)

Sequence diagram exercise 1

Let's do a sequence diagram for the following casual
use case Start New Poker Round :use case, Start New Poker Round :

The scenario begins when the player chooses to start a new
round in the UI. The UI asks whether any new players want to
join the round; if so the new players are added using the UIjoin the round; if so, the new players are added using the UI.

All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies an ante bet of
th t N t h l i d lt h d f t the proper amount. Next each player is dealt a hand of two
cards from the deck in a round-robin fashion; one card to each
player, then the second card.

If the player left of the dealer doesn't have enough money to
ante, he/she is removed from the game, and the next player
supplies the ante. If that player also cannot afford the ante,

42

this cycle continues until such a player is found or all players
are removed.

Sequence diagram exercise 2

Let's do a sequence diagram for the following casual
use case Add Calendar Appointment :use case, Add Calendar Appointment :

The scenario begins when the user chooses to add a new
appointment in the UI. The UI notices which part of the calendar is
active and pops up an Add Appointment window for that date and p p p pp
time.

The user enters the necessary information about the appointment's
name, location, start and end times. The UI will prevent the user from
entering an appointment that has invalid information such as an entering an appointment that has invalid information, such as an
empty name or negative duration. The calendar records the new
appointment in the user's list of appointments. Any reminder selected
by the user is added to the list of reminders.

If the user already has an appointment at that time, the user is
shown a warning message and asked to choose an available time or
replace the previous appointment. If the user enters an appointment
with the same name and duration as an existing group meeting the

43

with the same name and duration as an existing group meeting, the
calendar asks the user whether he/she intended to join that group
meeting instead. If so, the user is added to that group meeting's list
of participants.

44

