

• Different skill-sets, knowledge, etc. are needed for the

Outline

- What is a software development lifecycle?
- Why do we need a lifecycle process?
- Lifecycle models and their tradeoffs
 - "Code-and-fix"- Waterfall
 - Spiral
 - Evolutionary prototyping
 - Staged delivery
 - ...there are many others (XP, scrum, ...)!
- Main recurring themes (Agile processes)

Ad-hoc development

- ad-hoc development: creating software without any formal guidelines or process
- Advantage: easy to learn and use!

the artifact-oriented components

human-oriented components

• Disadvantages?

Ad-hoc development

- ad-hoc development: creating software without any formal guidelines or process
- Advantage: easy to learn and use!
- Some disadvantages of ad-hoc development:
 some important actions (testing, design) may go ignored
 - not clear when to start or stop doing each task
 - does not scale well to multiple people
 - not easy to review or evaluate one's work
- A common observation: The later a problem is found in software, the more costly it is to fix.

Lifecycle stages

- Virtually all lifecycles share
 - Requirements
 - Design
 - Implementation
 - Testing
 - Maintenance
- Key question: how do you combine them, and in what order?

The software lifecycle

- Software lifecycle: series of steps / phases, through which software is produced
 - from conception to end-of-life
 - can take months or years to complete
- · Goals of each phase:
 - mark out a clear set of steps to perform
 - produce a tangible item
 - allow for review of work
 - specify actions to perform in the next phase

Benefits of using a lifecycle

- It provides us with a structure in which to work
- It forces us to think of the "big picture" and follow steps so that we reach it without glaring deficiencies
- Without it you may make decisions that are individually on target but collectively misdirected
- It is a management tool

Benefits of using a lifecycle

- It provides us with a structure in which to work
- It forces us to think of the "big picture" and follow steps so that we reach it without glaring deficiencies
- Without it you may make decisions that are individually on target but collectively misdirected
- It is a management tool Drawbacks?

"Code-and-fix" model

Advantages

- Little or no overhead just dive in and develop, and see progress quickly
- Applicable sometimes for very small projects and short-lived prototypes

But DANGEROUS for most projects

- No way to assess progress, quality or risks
 Unlikely to accommodate changes without a major design overhaul
- Unclear delivery features (scope), timing, and support

Classic waterfall limitations

Classic waterfall limitations

- Difficult to specify all reqs of a stage completely and correctly upfront
- No sense of progress until the very end
- · Integration occurs at the very end
 - Defies integrate early and often rule
 - Solutions are inflexible, no feedback until end
 - What is delivered may not match customer real needs
- Phase reviews are massive affairs
 - It takes a lot of inertia (\$\$) to make any change

Spiral model

- Oriented towards phased reduction of risk
- Take on the big risks early and make some decisions
 - are we building the right product?
 - do we have any customers for this product?
 - is it possible to implement the product with the technology that exists today? tomorrow?
- Walks carefully to a result -- tasks can be more clear each spiral

Spiral model

Advantages

- Especially appropriate at the beginning of the project when the requirements are still fluid
- Provides early indication of unforeseen problems and allows for change
- As costs increase, risks decrease!
 Always addresses the biggest risk first

Spiral model

Advantages

- Especially appropriate at the beginning of the project when the requirements are still fluid
- Provides early indication of unforeseen problems and allows for change
- As costs increase, risks decrease!
 Always addresses the biggest risk first

Limitations?

Spiral model

Advantages

- Especially appropriate at the beginning of the project when the requirements are still fluid
- · Provides early indication of unforeseen problems and allows for change
- · As costs increase, risks decrease!
 - Always addresses the biggest risk first

Limitations?

Lots of planning and management Requires flexibility of the customer & contract Relies on developers to have risk-assessment expertise

Staged delivery model

Very practical in practice, widely used and successful

Advantages

- Can ship at the end of any release-cycle ٠
- While not feature complete, intermediate deliveries show progress, satisfy customers, and provide opportunity for feedback
- · Problems are visible early (ie. integration)
- Facilitates shorter, more predictable release cycles

Staged delivery model

Very practical in practice, widely used and successful

Advantages

- · Can ship at the end of any release-cycle
- While not feature complete, intermediate deliveries show progress, satisfy customers, and provide opportunity for feedback
- Problems are visible early (ie. integration)
- Facilitates shorter, more predictable release cycles

Limitations?

Staged delivery model

Very practical in practice, widely used and successful

Advantages

- · Can ship at the end of any release-cycle
- While not feature complete, intermediate deliveries show progress, satisfy customers, and provide opportunity for feedback
- · Problems are visible early (ie. integration)
- ٠ Facilitates shorter, more predictable release cycles

Limitations? Requires tight coordination with documentation, mgmt, mktg Must be decomposable Extra "release" overhead

Evolutionary prototyping model

Another popular and successful model, especially for custom products

Advantages

- Addresses risks early
- Produces steady signs of progress
- Useful when requirements are changing rapidly or customer is non-committal

Evolutionary prototyping model

Another popular and successful model, especially for custom products

Advantages

- Addresses risks early
- Produces steady signs of progress
- Useful when requirements are changing rapidly or customer is non-committal

Limitations?

Evolutionary prototyping model

Another popular and successful model, especially for custom products

Advantages

- Addresses risks early
- Produces steady signs of progress
- Useful when requirements are changing rapidly or customer is non-committal

Limitations

Requires close customer involvement

May spell trouble if the developers are inexperienced Feature creep, major design decisions, use of time, etc. Hard to estimate completion schedule or feature set

Why are there so many models?

Choices are good!

- The choice of a model depends on the project circumstances and requirements
- A good choice of a model can result in a vastly more productive environment than a bad choice
- A cocktail of models is frequently used to practice to get the best of all worlds. Models are often combined or tailored to environment

How do you evaluate models?

- · Consider
 - The task at hand
 - Risk management
 - Quality / cost control
 - Predictability
 - Visibility of progress
 - Customer involvement and feedback
- Theme: Aim for good, fast, and cheap. But you *can't* have all three at the same time.

Model category matrix

• Rate each model 1-5 in each of the categories

Risk mgmt.	Quality/ cost ctrl.	Predict- ability	Visibility of progress	Customer involvement
1	1	1	3	2
2	4	3	1	2
5	5	3	3	3
3	3	2	5	5
3	5	3	3	4
4	3	5	3	2
	Risk mgmt. 1 2 5 3 3 3 4	Risk mgmt. Quality/ cost ctrl. 1 1 2 4 5 5 3 3 3 5 4 3	Risk mgmt.Quality/ cost ctrl.Predict- ability111243553332353435	Risk mgmt.Quality/ cost ctrl.Predict- abilityVisibility of progress111324315533332535334353

What's the best SW dev model?

- A system to control anti-lock braking in a car
- A hospital accounting system that replaces an existing system
- An interactive system that allows airline passengers to quickly find replacement flight times (for missed or bumped reservations) from terminals installed at airports