
4/8/2009

1

Cycle

Life

Software

Software development lifecycle
The power of process

50MLOC = 50 million lines of code

• 50 lines/page‐side ⇒
1M page‐sides

• 1K page‐sides/ream ⇒
1K reams

• 5 words/LOC @ 50
wpm ⇒ 50MLOC/5M
min

• 5M min = 83,333 hr =

• 2 inches/ream ⇒ 2K
inches

• 2K inches = 167 feet ≈
twice the height of the
Allen Center

3,472 days ≈ 10 years

2

Just to type!
No breaks and

no thinking allowed!

Addressing software complexity

What are/is the …?

• Requirements

• Design

• Implementation

Who does the …?

• Requirements

• Design

• Implementationp

• Testing plan

• …

p

• Testing

• …

3

• Two sides of the same coin
• Different approaches, representations, etc. are needed for

the artifact-oriented components
• Different skill-sets, knowledge, etc. are needed for the

human-oriented components

Outline
• What is a software development lifecycle?
• Why do we need a lifecycle process?
• Lifecycle models and their tradeoffs

– “Code-and-fix”Code and fix
– Waterfall
– Spiral
– Evolutionary prototyping
– Staged delivery
…there are many others (XP, scrum, …)!

• Main recurring themes (Agile processes)

Ad-hoc development

• ad-hoc development: creating software without any
formal guidelines or process

• Advantage: easy to learn and use!
• Disadvantages?

Ad-hoc development
• ad-hoc development: creating software without any

formal guidelines or process
• Advantage: easy to learn and use!

• Some disadvantages of ad-hoc development:
i t t ti (t ti d i) i d– some important actions (testing, design) may go ignored

– not clear when to start or stop doing each task
– does not scale well to multiple people
– not easy to review or evaluate one's work

• A common observation: The later a problem is found
in software, the more costly it is to fix.

4/8/2009

2

Lifecycle stages

• Virtually all lifecycles share

– Requirements

– Design

– Implementation

– Testing

– Maintenance

• Key question: how do you combine them, and in
what order?

7

The software lifecycle
• Software lifecycle: series of steps / phases,

through which software is produced
– from conception to end-of-life
– can take months or years to complete

• Goals of each phase:
– mark out a clear set of steps to perform
– produce a tangible item
– allow for review of work
– specify actions to perform in the next phase

Benefits of using a lifecycle Benefits of using a lifecycle

• It provides us with a structure in which to
work

• It forces us to think of the “big picture” and
f ll t th t h it ith tfollow steps so that we reach it without
glaring deficiencies

• Without it you may make decisions that are
individually on target but collectively
misdirected

• It is a management tool

Benefits of using a lifecycle

• It provides us with a structure in which to
work

• It forces us to think of the “big picture” and
f ll t th t h it ith tfollow steps so that we reach it without
glaring deficiencies

• Without it you may make decisions that are
individually on target but collectively
misdirected

• It is a management tool Drawbacks?

Are there analogies outside of SE?

Consider the process
of building the Paul
Allen Center

4/8/2009

3

Project with little attention on process

Survival Guide:
McConnell p24

Project with early attention on process

Survival Guide:
McConnell p25

“Code-and-fix” model “Code-and-fix” model
Advantages
• Little or no overhead - just dive in and develop, and

see progress quickly
• Applicable sometimes for very small projects and

short-lived prototypes

But DANGEROUS for most projects
• No way to assess progress, quality or risks
• Unlikely to accommodate changes without a major

design overhaul
• Unclear delivery features (scope), timing, and support

Classic waterfall model

Software
Requirements
Validation

System
Requirements
Validation

Preliminary
Design
Validation

Detailed
Design
Validation

Operations &
Maintenance
Revalidation

Test

Validation test

Code &
Debug
Development test

Classic waterfall advantages
• Can work well for projects that are: very

well understood but complex
– Tackles all planning upfront
– The ideal of no midstream changes equates

to an efficient software development process

• Can provide support for an inexperienced
team
– Orderly sequential model that is easy to follow
– Reviews at each stage determine if the

product is ready to advance

4/8/2009

4

Classic waterfall limitations Classic waterfall limitations

• Difficult to specify all reqs of a stage
completely and correctly upfront

• No sense of progress until the very end
• Integration occurs at the very endIntegration occurs at the very end

– Defies integrate early and often rule
– Solutions are inflexible, no feedback until end
– What is delivered may not match customer real

needs
• Phase reviews are massive affairs

– It takes a lot of inertia ($$) to make any change

Spiral model – risk oriented

Determine objectives
Identify and resolve risks
Evaluate alternatives
Develop and verify deliverables
Plan next spiral
Commit (or not) to next spiral

Spiral model
• Oriented towards phased reduction of risk

• Take on the big risks early and make some
decisions

b ildi h i h d ?– are we building the right product?
– do we have any customers for this product?
– is it possible to implement the product with the

technology that exists today? tomorrow?

• Walks carefully to a result -- tasks can be
more clear each spiral

Spiral model
Advantages
• Especially appropriate at the beginning of the

project when the requirements are still fluid
• Provides early indication of unforeseen

problems and allows for change
• As costs increase, risks decrease!

– Always addresses the biggest risk first

Spiral model
Advantages
• Especially appropriate at the beginning of the

project when the requirements are still fluid
• Provides early indication of unforeseen

problems and allows for change
• As costs increase, risks decrease!

– Always addresses the biggest risk first

Limitations?

4/8/2009

5

Spiral model
Advantages
• Especially appropriate at the beginning of the

project when the requirements are still fluid
• Provides early indication of unforeseen

problems and allows for change
• As costs increase, risks decrease!

– Always addresses the biggest risk first

Limitations?
Lots of planning and management
Requires flexibility of the customer & contract
Relies on developers to have risk-assessment expertise

Staged delivery model

Waterfall-like beginnings, then develop in short release cycles:
plan, design, execute, test, release

with delivery possible at the end of any cycle

Staged delivery model

Advantages
• Can ship at the end of any release-cycle
• While not feature complete, intermediate deliveries

show progress satisfy customers and provide

Very practical in practice, widely used and successful

show progress, satisfy customers, and provide
opportunity for feedback

• Problems are visible early (ie. integration)
• Facilitates shorter, more predictable release cycles

Staged delivery model

Advantages
• Can ship at the end of any release-cycle
• While not feature complete, intermediate deliveries

show progress satisfy customers and provide

Very practical in practice, widely used and successful

show progress, satisfy customers, and provide
opportunity for feedback

• Problems are visible early (ie. integration)
• Facilitates shorter, more predictable release cycles

Limitations?

Staged delivery model

Advantages
• Can ship at the end of any release-cycle
• While not feature complete, intermediate deliveries

show progress satisfy customers and provide

Very practical in practice, widely used and successful

show progress, satisfy customers, and provide
opportunity for feedback

• Problems are visible early (ie. integration)
• Facilitates shorter, more predictable release cycles

Limitations?
Requires tight coordination with documentation, mgmt, mktg
Must be decomposable
Extra “release” overhead

Evolutionary prototyping model

Develop a skeleton system and evolve it for delivery

4/8/2009

6

Evolutionary prototyping model

Advantages
• Addresses risks early
• Produces steady signs of progress

Another popular and successful model,
especially for custom products

Produces steady signs of progress
• Useful when requirements are changing rapidly

or customer is non-committal

Evolutionary prototyping model

Advantages
• Addresses risks early
• Produces steady signs of progress

Another popular and successful model,
especially for custom products

Produces steady signs of progress
• Useful when requirements are changing rapidly

or customer is non-committal

Limitations?

Evolutionary prototyping model

Advantages
• Addresses risks early
• Produces steady signs of progress

Another popular and successful model,
especially for custom products

Produces steady signs of progress
• Useful when requirements are changing rapidly

or customer is non-committal

Limitations
Requires close customer involvement
May spell trouble if the developers are inexperienced

Feature creep, major design decisions, use of time, etc.
Hard to estimate completion schedule or feature set

Why are there so many models?

• The choice of a model depends on the
project circumstances and requirements

• A good choice of a model can result in a

Choices are good!

• A good choice of a model can result in a
vastly more productive environment
than a bad choice

• A cocktail of models is frequently used
in practice to get the best of all worlds.
Models are often combined or tailored
to environment

How do you evaluate models?
• Consider

– The task at hand
– Risk management
– Quality / cost control
– Predictabilityy
– Visibility of progress
– Customer involvement and feedback

• Theme: Aim for good, fast, and cheap.
But you can't have all three at the same time.

Model category matrix

Risk
mgmt.

Quality/
cost ctrl.

Predict-
ability

Visibility
of progress

Customer
involvement

code-and-fix

waterfall

• Rate each model 1‐5 in each of the categories
shown: Risk

mgmt.
Quality/
cost ctrl.

Predict-
ability

Visibility
of progress

Customer
involvement

code-and-fix 1 1 1 3 2
waterfall 2 4 3 1 2

36

waterfall

spiral

evolutionary
prototyping

staged delivery

design-to-
schedule

waterfall 2 4 3 1 2
spiral 5 5 3 3 3
evolutionary
prototyping 3 3 2 5 5
staged delivery 3 5 3 3 4
design-to-
schedule 4 3 5 3 2

4/8/2009

7

What’s the best SW dev model?
• A system to control anti-lock braking in a car
• A hospital accounting system that replaces an

existing system
• An interactive system that allows airline

passengers to quickly find replacement flightpassengers to quickly find replacement flight
times (for missed or bumped reservations) from
terminals installed at airports

