CSE 403, Winter 2008
Group Project Specification

Your team has been funded to produce the softwajeqt outlined in your proposal. The "customering you to write
the product is the wealthy firm, SteppCo. The B€p CEO intends to pay your team for its servigeawarding points.
SteppCo has upper-level managers ("TAs"), one amwtvill meet regularly with your group to discussprogress.

The overall scope of your project includes thedwihg deliverables and other graded items:

Points Due

» Software Requirements Specification (SRS) 50 Mon Jan 28 2:30pm
» Software Design Specification (SDS) 50 Fri Feb 8 2:30pm
» Zero Feature Release (ZFR) 20 Mon Feb 11 2:30pm
» Test plan and initial test cases (TestPlan) 25 Fri Feb 22 2:30pm
* Initial implementation (Beta) 50 Sun Feb 24 11:59pm
» Updated Design Specification (SRS2/SDS2) 25 Fri Mar 7 2:30pm
* Feature-complete "Version 1.0" implementation (v1l) 50 Sun Mar 9 11:59pm
» Refactored, updated implementation (v1.1) 20 Sat Mar 15 11:59pm
* In-person customer meetings 10 periodically

» Weekly progress emails 20 every Sun 11pm

« TOTAL 320

Customer's Project Requirements:

The customers do not know exactly what they wauitttey do have the following requests:
* The product must be a web-based application writiéim an object-oriented programming language.
* The product must have some non-trivial databaseier-side data component.

» The product must have some meaning or contextdritsi computer science. For example, it cannat beurce
control system or a web-based Ruby interpreter.

» The product should display the SteppCo logo (whiehd like you to design) prominently on the UI.

* Your product should have a way of generating (itdil) "revenue.” A possible way to do this woulddn ad-
based approach, by providing space on your Ulficachimage. Note that revenue is not the sameodis. p

 The product should be as usable as possible, exMepeople who are not expert computer users (With t
exception of projects that are designed specifidall experts, such as development tools).

* The product must be robust against common errats as invalid user input, lost network connectiats,

* As before, the product must involve communicatietwzen two or more computers. In other worddhaiutd be
network enabled, or connect to a remote databadedyad, or be a client-server application, etcyoidir original
proposal did not carefully take this into accoyn¢ase do so now.

* Your project must be usable for a person on a stahdomputer. Since it is web-based, it must rayelblic
URL that others can use to access it. Expectth®atiser will have any necessary libraries andst@lch as a
Java or .NET runtime), but after that, the useughbe able to use your system without hassle.

Beyond these requirements, you are largely framake decisions of your own. You should, howe\ak to
your customers as you plan this project in orden#&ke sure your product meets their needs. Fbcriedlit,
you should discuss your proposed requirementsnressay with your customers before submitting them.

10f10

Customer Discussion:

This document is a partial specification for youojpct's requirements, but much information is mtitmnally left out.
This is to encourage your group to ask questiorithef customer.” You may ask these questionsdtute, by email, or
on the message board. Major turnins that do rilgictequestions with the "customer” may not recdidecredit.

Submission and Grading:
There will be an online submission system for togrnin documents and code related to the phasesuofpyoject.

For phases that require written documents, if ymoose to turn in your documents in class, turn theas printed pages
in lecture. If you turn them in electronically lsnit them in Word (.doc), PDF (.pdf), or Violetiplet) format, in a .ZIP
file namedTeamName_PhaseNane. zi p. For example, if your project is called "Booyadrid you are submitting the
SRS phase, your .ZIP file should be namBedyah_srs. zi p. The documents inside this .ZIP archive shouftbce
their contents, such @oyah_use_cases. pdf or Booyah_itens_1-3.doc. You may receive a deduction if you
turn in clumsily named or organized files.

Make sure that your project's name and all groumbegs' names appear clearly atop each documeny. o@a copy of
the documents should be submitted for each group.

Specification Changes:

Part of the nature of software engineering is thiaigs can (and often do) change while you ar&aémiddle of a project.
We reserve the right to amend or alter any contefthis document during the course of this quartédrany such
changes are made, they will be posted and annowheady to everyone. We promise not to make thaistate changes
to any phase unless absolutely necessary; any cizgmges will be posted at least one week befarteptinase is due.

Customer Meetings:

At various points during the project, your groupusld arrange to meet with your primary customet¢syiscuss its
progress. This meeting will count as a small portf your grade. Your group should come prepévatiscuss what has
been done, what is left to do, what is likely tol&# out, any current problems or risks, and s@mpecific questions you
have for the customers as the release draws néaur project manager plus at least two other gnmgmbers must be
present at each of these meetings.

The exact ranges of dates and times for these mgsetiill be announced in class and on the web site.

Weekly Progress Emails:

Every week by Sunday night at the latest, your grawst send an email message to its primary custdmefly
discussing the following information:

* Your team's progress so far

* What each member of your group is working on théekv

* What transpired at your team's latest in-persortinge€your team is expected to meet at least ongeek)
(this is also sometimes called the "minutes" ofrtleeting, though you do not need to list every bdethil)

2 of 10

PHASE 1: Software Requirements Specification (SRS)

The SRS milestone artifact is a set of documen#teat to your project's requirements and high-lévietesign. Your
SRS must contain the following items:

1. Requirements outline
Submit a document, 2-5 pages in length, with ltefcriptions of each of the following areas:

a. Product Description, Audience, and Feature Set: What is your product? What is the target audkeymu expect to
use the product? What are its major featurestudecat least 4 major features you will provideng with at least 2
other minor features or aspects you hope to complet

b. Software Toolset: What programming languages, data sources, versiainat, and other tools will you use?

c. Group Dynamics. For the most part, your group organization is ugdo. Howeverwe require that you choose a
single per son to serve asyour Project Manager (PM). Who will be your project manager? What willthe other
members' roles? Will everyone share in the deveéop, or will you have designated designers, tesedc.? Why
have you chosen these roles? If a disagreemesaeisahow will it be resolved? Be specific.

d. Documentation: What external documentation will you provide thdll wnable users to understand and use your
product? This could take the form of help fileswetten manual, integrated help text throughouwt thi, etc.
(Comments and Javadoc in source code don't cdwayt;are developer docs, not user docs.)

e. Schedule/ Timeline: Provide a rough schedule for each member or sulppgnathin your team. For example, how
long you believe your developers will spend workorgeach major feature listed in your product dpion? Who
will work on the design, and how much time do yapext it will take? Which features are "beta" teas? Provide
reasonable guesses as much as possible, but yowtlile graded on the accuracy of these predition

f. Risk Summary: Describe at least three specific adjustments ydu make if the project begins to fall behind
schedule. No more than two of the adjustmentsligpgan be feature cuts; at least one must be sxh@s change or
cutback, such as changing specific areas of tesitjgsting your group dynamics or time schedule, e

2. UML use cases
Submit the following use case documents:

a. Two (2) formal use cases for scenarios you think are two of the most imaottto your product. They should be
similar to Use Cases 1, 2, 3, and 5 from Cockbyrafger, and should include: primary actor, leveécpnditions,
minimal/success guarantees, a list of steps tcstiteess scenario, a list of properly numbered sides, and a
failure-handling remedy for each extension as gmpaite. It is impossible to think of every possilfhilure case
ahead of time. But you should list a reasonali®fsextensions and remedies if reasonable ones. eiyou do not
have a known remedy, your use case should statarnki explain what will be done to investigate j[esemedies.

b. One (1) casual use case in paragraph form for one other scenario thattyank is important to your product, perhaps
of lower importance than the two you chose to defpionally. This use case should be similar to sese 4 from
Cockburn's paper, describing the main success sodirat in paragraph form, then listing each edi®en and its
remedy (if known) in a second paragraph.

3. Ul prototype

Submit diagrams containing rough sketches of yoadyct's user interface. These diagrams shouldtidéye major Ul
used to complete the use cases you submit. Fomp&aif one of your use cases is to Purchase Stgoki should draw
the initial Ul that is presented when the user wgsto purchase a stock, along with any other maijlodows, messages,
etc. that appear as the user navigates throughghisase.

Submit at leastwo (2) Ul diagrams. The diagrams can be drawn by hand or comput@armbe screenshots of an actual
prototype. If a window leads to a dialog box, ddmavn box, etc., include it as a sub-diagram.

Your diagrams do not need to be pretty to getdrdidit, but they should be legible and reflect sdarethought about
what options will need to be shown and how the uskuse the software.

3 of 10

PHASE 2: Software Design Specification (SDS)

The SDS milestone is a set of documents about gaject's design. Your design should specify hovintplement an
object-oriented product to meet the requirementydar SRS. Among other things, your SDS shouldwansthe
questions: what are your classes, what are themsgplities of each class, and how do the clase#taborate?

Your SDS must contain the following items:

1. UML class diagram

Submit aUML class diagram for your system in the format shown in Fowler, @ea 3. Your diagram should display
all major classes, attributes (fields), methodsridblistget /set /i s methods), inheritance/interface relationships, and
associational relationships (hnamed and directetth, nultiplicity adornments).

Your design will be evaluated on completeness dsagdevel of thought, attention to principlesdlissed in class, and
proper UML syntax. Follow Riel's OO design heueistsuch as:

* use encapsulation (Heuristic 2.1)

» keep related data and behavior in the same plageridtic 2.9)

* minimize each class's public interface (Heuristi, 2.6)

* emphasize cohesion and limit coupling (Heuristit, 2.8)

* avoid "god classes" (Heuristic 3.2)

* avoid insignificant or irrelevant classes (Heuosill, 3.7, 3.8)

* model-view separation and model independence friem (Heuristic 3.5)
* avoid irrelevant "agent" or "controller” classese(Histic 3.10)

Distribute your project's functionality and alloarffeatures to be developed in parallel as mugboasible.

2. UML sequence diagrams

Submit two(2) UM L sequence diagrams that depict your product executing two of its inmtpaot use cases. These can be
the same use cases you wrote about in your SR8.sdduence diagrams should follow the format okettemples from
Fowler, Chapter 4. Your diagram should show aitipigants (objects) in the sequence, all importirgcted messages
between them and their return values (if any), &l ws interaction frames with proper operator adwnts as
appropriate. Use good design with decentralizedrofy no one class or object should do the bulthefwork.

The sequence diagrams show the "life" of a usegls request. Show the request's path through ybuwsedver, and/or
data layers as it interacts with each to accomphisttask.

Accompanying one or both of the sequence diagrdmosld be a pseudo-code description of the sameitlgg similar
to Fowler's Figure 4.4,

3. Coding style guidelines

Submit a document explaining what style conventyms plan to follow (a reference document or linikvan example
would be helpful), and how you plan to enforce aststent coding style between group members. esany tools
you plan to use to enforce these conventions, ar@ap methodologies your group members plan taasaforce them,
such as code reviews. If you plan to do code vesjelescribe how you will provide evidence of thesdews to the
grader. Will you take review notes? Will you @stol to annotate the reviewed code? Etc.

4. Presentation

Submit a set of 5-10 slides in PDF, PPT, or ODInédrof a brief presentation summarizing your progetd the work
you've done on it so far. You should talk aboet dwerall project idea, its major features as natliin your SRS, some
high-level aspects of its design including at least of your design diagrams, your languages aan teles, and so on.
Each group will be given approximatedyl0 minutes. At least 3 group members must pasteijn the presentation.

Use at least two diagrams in your slides to rechilleredit; these can be taken directly from yotier documents.

4 of 10

PHASE 3: Zero Feature Release (ZFR)

The zero-feature release milestone consists oéletsit implementation of your product and a documeéth instructions
for accessing some of your development tools. durpose of this milestone is to work out bugs irsi@n control, bug
tracking, deployment, etc. Unless otherwise spatiho functionality needs to be working othemtlad'front page.”

1. Featureless live product web site

Since your project is web-based, provide us withRd to reach the front page of your product.

2. ZFR instructions document

Your group should also submit a ZFR document desggithe items below. Some documents describeepsas the user
or developer must perform. Part of your grade béllbased on the simplicity of these processeshawdaccurately your
directions match what the user must actually do.

You should also put the resources in place sothieagraders can examine and test the processesbdedsm the ZFR
document promptly after your submission. You mantto arrange a "dry run" with the customer bdfarel. Your
ZFR document should address the following items:

a. Sourcecontrol and build processinstructions

Your project's build process is the set of toold aommands to compile and "build" your system. nTinra set of
directions to find your build system, check ouffiss, and build them. In grading, we will follotese directions.

For full credit,your team should have a reasonable resolution to the issue of version control. For example, you
could handle this issue by using a CVS or SVN r#gpsin a reachable location, or by hosting theeon a public
system such as SourceForge. Your instructionsldleoglain how to access any such system or reggsit

The directions should be written in sufficient diethat an intelligent developer can follow therif. the system(s)
require login information to access them, you stiqubvide this information.

Part of your grade for this item relates to the hamand complexity of commands the developer msest udeally
your system will have a single command that doéene-step build," that checks out all source cawenfyour
repository, builds all necessary binaries, pack#ges, and places them in a known location.

Beginning with the night of your ZFR turnithe grader will log in to your version control system once a week to
count the number of files and lines present indhstem, as well as the number of lines modified gy your
group's development progress. Lack of signifizseeekly progress may impact your team's gradesten pdases.

b. Bug-tracking system instructions

Describe the set of tools used to document exidtings and missing features in your system's cdden in a set of
directions to your customers, describing brieflywhitey find your bug-tracking system, examine ftise df current
bugs, and file a bug. In grading, we will follohese directions and examine whether the bug trgayetem exists
and is usable. The directions should be writtethaban intelligent developer can follow them.

Your bug tracking system does not need to contaseraprehensive list of bugs or missing featuresit fr full
credit, it should have at least one bug filed facteactive developerThese bugs may be requests for features, such
as "TODO: implement login behavior." If possiltiee bugs should list priority and a timeline to tlirem.

Beginning with the night of your ZFR turnithe grader will examine your bug-tracking system once aweek. Part
of your grade in later phases will reflect whetaesignificant number of accurate bugs are pre$entcontain proper
information such as severity and assignment toiipeevelopers to fix them.

c. Data accessinstructions

Since your product must have a server-side datgeoent, your ZFR should contain a set of instrunstiabout
where this data is stored and how to access itn fua set of directions that tells the grader hovind your data,
and how to briefly perform a trivial access of tbata. For example, if your data is in a databm$erm the grader
how to connect to this data and perform one venpk query against it. In grading, we will follahese directions.

5 of 10

PHASE 4: Testing Plan Document (TestPlan)

Your test plan is a document describing your plamshow you will test your product to assure itsalijty. Submit a
document, approximateBr4 pagesin length, addressing the following categories of testing:

1. Unit testing

List which classes of your project you intend tdt test, and if appropriate, which of their methaahsl behavior. For any
classes you do not plan to unit test, briefly fysfour decision not to do so.

Also briefly describe the process of your unit test developmeftho will write them? Will they be black-box tes
(written by someone who has not seen the source beihg tested), or white box (by someone who leen she
complete source code)? What are some of the nigméisant cases you plan to test, such as boundanglitions and
expected error cases?

For full credit, your project's eventual code sufsion must demonstrate significant unit test cayeracovering
approximately 30% or more of the code. Therefareyour test plan document you should describe ow plan to
prove to the customer that you have achieved thigerage. Perhaps you will want to use a tool thsptlays unit test
coverage percentages, such as NoUnit.

2. System testing

Describe the ways in which you plan to test yowdpict as a whole. For full credit, your eventuaduct must undergo
non-trivial testing in at leastvo (2) areas of system testing, such as the following:

* Automated Ul testing (such as by Selenium)
» Performance testing / profiling (memory or CPU w&ag
» Load/ stress testing
» Security testing and auditing
» Usability testing
In your test plan document, describe which kindsydtem testing you plan to perform, and also how wtend to

demonstrate to the grader that you have perforimex.t Testing that is done anecdotally without @sulting evidence
may not be given credit.

6 of 10

PHASE 5: Initial Implementation (Beta)

For the "beta" product release, you must produser&ing initial version of your project, reflectinrgany of the features
listed in your SRS and SDS. Submit or provideftlewing items:

1. Binary Distribution

The binary distribution contains the resources s&ag to run and use your system. Since your syisteveb-based, its
binary distribution consists of the site being upd aunning by the due date.

This item will be graded on whether it reflects stiaimtial work and effort on the part of your tedms a solid and
polished user experience, and successfully implésrtbe usage cases you have described in previmses.

Your product need not necessarily be 100% bugimeeceive full credit, but any known bugs shouéddmcumented,
and a user testing the system should not encoantem-trivial number of bugs that are unlisted aurybug-tracking
system. Your system should be robust so thateooeur gracefully as much as possible.

This item will be graded on whether it demonstraesfollowing attributes:

* anon-trivial amount work and effort

» completeness of a non-trivial number of featuratired in SRS document (especially a non-triviainier of
the features you listed as "major features" in YoRES)

* robustness, to the degree that the system carsteel tend used in non-trivial ways (system may lsavee bugs)

2. Source Distribution

The source distribution contains all source cod# @her resources that were created by the developteam. These
resources should be bundled into one or more caspdearchives. Assume that this item is beingaseebfor one or
more developers who would pick up development wheteleft off.

Your code willnot be examined in detail in this phase, other tharetdy the following:

« that it reflects non-trivial work and effort
» that each file has a clear comment that namesiit®gs) (or that code authorship is present mesavay)
« that several members of the team have made cotidmisuo the source code

Your code willnot be graded on style and design, commenting, elegaadundancy, and so on.

3. Initial Testing Resources

Your code does not need to be thoroughly coveretediyng and quality-assurance tools in the bets@hbut we will
look to see that you do have at least the following

* anon-trivial unit test for one major class of yesystem

» one of the following three items:
0 a non-trivial unit test for another major existicigss of your system, OR
0 aunit test for part of the system thah@ yet implemented (in the "test-first" style), OR
0 at least one non-trivial testing item that is NOUirt test.

7 of 10

PHASE 6: Updated Design Documents (SRS2/SDS2)

The "SRS2/SDS2" phase is an update of some docarpemduced in earlier phases. On real softwar@sy design
documents and specs are "living" documents that beugpdated to stay in sync with the product ihaking created.

Submit or provide the following items:

1. Requirements Revisited
Submit a document briefly revisiting the followiagpects of your initial software requirements gj&®S):

a. Progress Assessment: How does your team as a whole view its progrestate on the project? Are you confident in
the progress you are making, and are you happythétwork that has been completed so far? Whgatus outlook
for the rest of the project?

b. Features and Cuts: Do you still believe that you will complete theajor functionality and features listed in your
SRS? What about the extra features and frillslig@d? If not, why not? What features do younpia cut to help
you complete the project in time, and why have gbasen these to be cut? How much work do you agtiryou
will save by cutting these features?

c. Group Dynamics: What are your team members' current roles, andt whll be their responsibilities for the
remainder of the project?

d. Revised Schedule: In your original SRS, you submitted an approxemnsthedule for how long you thought your team
would spend its time. In this phase, submit a sehedule showing how each member has actually spsfher
work time, which is likely very different than yowriginal estimate. (Appropriate units of measare "days" or
"weeks" on a given task.) In particular, descabgroximately how much time you have actually sgenfiar on each
of those features, along with estimates for howhmmore time you think it will take to finish any tifem that went
unfinished. Try to be accurate within a few depeledays for each feature; you may want to lookaair version
control logs to get a more accurate picture of kmwg you've spent working on each feature.

2. UML Class Diagram, updated

Submit an updated version of your UML class diagfesm your SDS that reflects the actual code tlzat teen written
so far for your project. (The closer your actuapiemented design is to your original SDS desige |¢ss work to do!)

3. Sequence Diagram, updated

Submit an updated version ofie of your two UML sequence diagrams from your SD& tieflects the actual code that
has been written so far for your project. (Theseloyour actual implemented design is to your nabhBDS design, the
less work to do!)

These documents will be graded on whether theydadt match the design and flow of your sourceecaslturned in, on
their adherence to UML syntax as taught in clasd,an the soundness of the underlying design teeictl

8 of 10

PHASE 7: Feature-complete "Version 1.0" Implementat ion (v1)

For your "v1" product release, you must produceogkimg initial version of your project, reflectingany of the features
listed in your SRS and your schedule. Submit owidle the following items:

1. Binary Distribution

The binary distribution contains the resources s&ag to run and use your system. Since your syisteveb-based, its
binary distribution consists of the site being upd aunning by the due date.

This item will be graded on whether it reflects stiaimtial work and effort on the part of your tedms a solid and
polished user experience, and successfully implésntre usage cases you have described in previoasepg. Your
product need not necessarily be 100% bug-freedeive full credit, but any known bugs should bewented, and a
user testing the system should not encounter amoal number of bugs that are unlisted in youghtacking system.
Your system should be robust so that errors oc@aedully as much as possible.

2. Source Distribution

The source distribution contains all source cod# @her resources that were created by the developtaam. These
resources should be bundled into one or more caspdearchives. Assume that this item is beinggpespfor one or
more developers who would pick up development wieteleft off.

This item will be graded on whether it demonstraiesfollowing attributes:

» work and effort

» well-designed according to the heuristics we haeerled in class

» making use of design patterns as appropriate

» being otherwise elegantly and robustly designed

» documented using comments on each file and signifimethod as appropriate
» general cleanliness and elegance of the code

Since the code is to be submitted in a state daifp being turned over to other developers, yoboausd document it
sufficiently so that they could read and understdand This includes summary descriptions of eadéd &long with
comments on methods and complex sections of codpaspriate.

3. Testing Resources

Your testing resources include any unit tests, raated testing facilities, testing plan documents] ather testing tools
or artifacts you have created as part of the qualsurance of your project. You are requireddimiaister unit testing
over a significant portion of your application's aiebcode using a framework such as JUnit.

To receive full credit your project must includet ranly substantial unit testing but at leaato (2) other areas of
significant additional testing; for example, you could perform documented udghilsing clearly defined test scenarios
with volunteer users from outside your group, ou yould create automated Ul tests using a syststimgeframework
such as Selenium. Part of your grade for this malhdepend on your choosing a reasonable sulfskinationality to
test and choosing effective test cases (in nungoepe, and coverage) to ensure the quality of yoplementation.

4. User Documentation

Your product should contain documentation explajrtime usage of the system to the user. As in tbeiqus releases,
this documentation is directed at a user and nata@gveloper, so it should focus on the user egpeei and not on the
system's implementation. The documentation wilgsded on whether it covers all major areas ofeisH the system
as well as its quality and completeness. Somdisfdocumentation may be integrated into the prodself, but this
should not come at the expense of a solid useriexpe.

9 of 10

PHASE 7: Refactored and Feature-added Implementatio n (v1.1)

The final project milestone is the "v1.1" produelieiase. Submit or provide the following items:

1. New feature implementation

Around the time that your "v1" release is being ptated, we will announce rew non-trivial feature that your group
must add to the product for its "v1.1" release. major portion of your grade for this phase will based on your
completion of this feature. This is a test of yabrlity to design for change, and the ability ouy team to maintain its
code over time.

Not only will you be graded on correctly implemenggithis functionality, but your source code will &eamined to see
how invasive the change was to your code and design

2. Bug fixes

Your v1.1 release should contdiresfor at least 3 non-trivial bugs that were present in your v1 release.

3. Demo / presentation

During the final week of the school quarter, eacbug will give a presentation demonstrating itsjgct This
presentation should be roughly 10 minutes longu ¥o not need to submit slides for the presentdiitnrmay do so if
you like. The bulk of your presentation should @os demonstration of the usage of the projedf.itéeor full credit, at
least three (3) of your group members must pasdteijn the presentation.

10 of 10

