Design Patterns

DEstay
PATTERNS
15 JAvA

Desien Patterns

Ehmem of Rl

DEsis PATTERYS
EXPLATNED

CSE 403, Spring 2008, Alverson

Design challenges

e Designing software is hard! One must find.:

o a good problem decomposition
o a design with flexibility, modularity and elegance

e Designs often emerge from trial and error

e Successful designs do exist
o two designs they are almost never identical
o they exhibit some recurring characteristics

CSE 403, Spring 2008, Alverson

Design patterns

A design pattern Is a time-tested solution to a
common software problem

e Patterns enable a common design vocabulary,
Improving communication, easing implementation
and documentation

o Patterns capture design expertise and allow that
expertise to be transferred

CSE 403, Spring 2008, Alverson

Online Readings

e My latest favorite survey of common patterns:
http://sourcemaking.com/design_patterns

e [Optional] See the “References” link on the class
web page for a number of others

EI2

CSE 403, Spring 2008, Alverson

Gang of Four (GoF) patterns

e Creational Patterns (abstract object instantiation)
Abstract Factory, Factory, Builder, Prototype
Singleton

e Structural Patterns (combine objects)
Adapter, Bridge, Composite, Decorator, Facade,
Flyweight, Proxy

e Behavioral Patterns (communication btwn objects)
Chain of responsibility, Command, Interpreter,
Iterator, Mediator, Memento, Observer, State,
Strategy, Template Method, Visitor

CSE 403, Spring 2008, Alverson

Pattern: Singleton

a class that has only one instance

=ingletan
&% instance ; Singleton

& Singleton()
%¥yetinstance() : Singleton

Y

=ingleton getinstancel) [
{

if{instance == null)
instance = new =ingletan(),

return instance;
CSE 403, Spring 2008, Alverson

Restricting object creation

e Problem: Sometimes we will really only ever need

one instance of a particular class.
o We'd like to make it illegal to have more than one
o Examples: keyboard reader, printer spooler, gradebook

e Why we care:
o Creating lots of objects can take a lot of time

o Extra objects take up memory
o It is a maintenance headache to deal with different

objects floating around if they are the same

CSE 403, Spring 2008, Alverson

Singleton pattern

e singleton: an object that is the only object of its
type

o Ensures that a class has at most one instance
o Provides a global access point to that instance

o Takes responsibility of managing that instance away
from the programmer (illegal to construct more
Instances)

o Provide accessor method that allows users to see the
(one and only) instance

o Possibly the most known / popular design pattern!

CSE 403, Spring 2008, Alverson

Singleton pattern

e singleton: an object that is the only object of its

type

o Ensures that a class has at most one instance
o Provides a global access point to that instance

o Takes responsibility of managing that instance away
from the programmer (illegal to construct more

Instances)

o Provide accessor method that allows users to see the

(one and only) instance

o Possibly the most known / popular design pattern!

CSE 403, Spring 2008, Alverson

How is this different from a
global variable?

Implementing singleton (one
Instantiation of the pattern...)

e Make constructor(s) private so that they can
not be called from outside

e Declare a single static private instance of
the class

e Write a public getlnstance() or similar

method that allows access to the single instance
o possibly protect / synchronize this method to ensure
that it will work in a multi-threaded program

CSE 403, Spring 2008, Alverson

Singleton sequence diagram

client Singleton instance: Singleton

if [instance has not been created]
|

Frehny :

|
] |
getinstance :

instance
.E: _________________________

instance J
=== .- .
send messages to instance as appropriate

Singleton example

e Consider a singleton class RandomGenerator that
generates random numbers

public class RandomGenerator {
private static RandomGenerator gen = new RandomGenerator();

public static RandomGenerator getinstance() {
return gen;

}

private RandomGenerator() {}

}

e Is there a problem with this class?

Singleton example 2

e Variation: don't create the instance until needed

public class RandomGenerator
private static RandomGenerator gen = null;

public static RandomGenerator getlnstance() {
If (gen == nullg {
gen = new RandomGenerator();

return gen;

}

=
e What could go wrong with this version?

CSE 403, Spring 2008, Alverson

Singleton example 3

e Variation: solve concurrency issue by locking
public class RandomGenerator
private static RandomGenerator gen = null;
public static synchronized RandomGenerator
_ getinstance() {
If (gen == nullg {
gen = new RandomGenerator();

return gen;

}

=
e Is anything wrong with this version?

Singleton example 4

e Variation: solve concurrency issue without
unnecessary locking

public class RandomGenerator i
private static RandomGenerator gen = null;

public static RandomGenerator getlnstance() {
If (gen ==null) {
synchronized (RandomGenerator.class) {
/[must test again -- can you see why”
// sometimes called test-and-test-and-set

If (gen == null
} (gen = new F\?a{ndomGenerator();
}
return gen;

}i

Singleton exercise

o Consider your projects. What classes could be
a singleton in this system?

CSE 403, Spring 2008, Alverson

Pattern: Factory

(a variation of Factory Method, Abstract

Factory)
L I

a class or method used to
create objects easily

product = FactoryMethod()

CSE 403, Spring 2008, Alver ! 1 | & FactorMethod (]

Factory pattern

e factory: a class whose job Is to easily create
and return instances of other classes

o Instead of calling a constructor, use a static method in
a "factory" class to set up the object

o Allows you to separate the construction information
from the usage information (improve cohesion, loosen

coupling), making creation and management of
objects easier

o Allows you to defer instantiation of the subclass

CSE 403, Spring 2008, Alverson

Separate creation from use

I’ll
Create !:)ase
me an Client Factor 1 el
Input > y <t the
Reader type
of
\\\ / input
N | new
. object 1
C J Q
(c/D) “\\\ / g
n y new =
object 2 %
4 new /
object 3

CSE 403, Spring 2008, Alverson

Separate creation from use

Create

me an Client
input

Reader

Sas

CSE 403, Spring 2008, Alverson

new
object 1

new
object 2

new
object 3

> Factory ¢

I'll
base
it on
the
type
of
input

—
—

saleal)

Objects should either make

other objects or use other
objects but never both.

Factory sequence diagram

. instance:
client FooFactony Foo _F

|
] |
createFoolargs) :

MY

instance

.E: ___________________
set properies (a658)

|
|
|
instance :

.g: __________________________
send messages to instance as appropriate

Factory implementation

When implementing a factory of your own, here’s one
scheme:

o The factory itself should not be instantiated
o make constructor private

o The factory uses StatiC methods to construct components

« The factory should offer as simple an interface to client
code as possible

CSE 403, Spring 2008, Alverson

Factory example

public class ImageReaderFactory

{
public static ImageReader createlmageReader(
InputStream is) {
Int imageType = figureOutimageType(Is);

switch(imageType) {
case ImageReaderFactory.GIF:
return new GifReader(is);
case ImageReaderFactory.JPEG:
return new JpegReader(Is); // etc.

}
}

C}E 403, Spring 2008, Alverson

Pattern: Decorator

objects that wrap around other objects to add

CSE 403, Spring 2008,

useful features

Barme applcalioes woikd bersb|
Irem veing abpEcis o mooel ey
aepac] al thar lusehiansitg byl
s dasige appoach would b
prihibulive b saparsive

Far axarmghs, mosl damrmant ai-
Rors manlubarias e bl o imsl-
| ared sk i o Ehes 1 somes
walurl, Homesese, Ty rwarakiy
wop ahar of uarg obissts
maprasanl apsh chamcks: and
graphical suman| A e docimsn
Dhairg a0 waukd prasces Sasibadly
al he Trwal ksl ke
apphsasan, Tael and grapkics
swask] ba ireateg yrikesmiy ik

|
-1- D

+ scrollbars

Decorator pattern

e decorator: an object that modifies behavior of, or
adds features to, another object

o Adds additional responsibilities to an object
dynamically

o The object being "decorated" usually does not
explicitly know about the decorator

o Decorator must maintain the common
Interface of the object it wraps up

What are two ways in which this
differs from inheritance?

CSE 403, Spring 2008, Alverson

Decorator example: GUI

Window using

inheritance
+drawy}
AN
[|
Window With_Vertical _Scrollbar Window With_Border
AN AN
Window_With_Horizontal _Scrollbar
FAN

Window With Vertical and Horizontal Scrollbar

£y

Window_ With_Vertical_and_Horizontal_Scrollbar_and_Border

CSE 403, Spring 2008, Alverson

Using decorator objects

Using aggregation instead
of inheritance

winterfaces
LCD
+araw()
Window Decorator
Hdraw() +drawt)
AN
I
Border VerticalSB HorizontalSB

CSE 403, Spring 2008, Alverson

Widget* aWidget = new BorderDecorator(
new HorizontalScrollBarDecorator(
new VerticalScrollBarDecorator(
new Window(80, 24))));
aWidget->draw();

Another decorator example: I/O

 InputStream class has only public int read() method
to read one letter at a time

e Decorators such as BufferedReader add additional
functionality to read the stream more easily

InputStream in = new FilelnputStream("*hardcode.txt");
InputStreamReader isr = new InputStreamReader(in);
BufferedReader br = new BufferedReader(isr);

/[InputStream only provides public int read()

String wholeLine = br.readLine();

CSE 403, Spring 2008, Alverson

Pattern: Facade

provide a uniform interface to a set of other
(alternative) interfaces
or
wrap a complicated interface with a simpler one

CSE 403, Spring 2008, Alverson

Facade pattern

e Problem: a current interface Is too complicated
to easily use OR there are several choices to
use for a subsystem; we want to allow the use of

either

o facade: objects that provide a uniform interface
to a complicated or set of other alternative

Interfaces

Examples from Cray:
MySQL package or PostgreSQL package
FFT math library from Fast FFT or FFTW or ...

Cray CRAFFT library example

crafft_z2z1d(n,input,isign)
z2z1d_simple1_inplace(n,input,isign)
z2z1d_simple_internal(n,input,input,isign,1,1)
A 4
dfftw_plan_dft_1d(plan,n,input,output,isign,FFTW_FLAG)

dfftw_execute(plan)

CSE 403, Spring 2008, Alverson

Cray CRAFFT library example

crafft_z2z2d(n1,n2,input,ld_in,output,|ld_out,isign,work)

L
z2z2d_adv1(n1,n2,input,ld_in,output,Id_out,isign,work)

A 4

z2z2d_adv_internal(n1,n2,input,ld_in,output,ld_out,isign,1,1,work
dfftw_plan_many_dft(plan,rank,n,howmany,input,inembed,istride,idist,output,onembed,ostride,odist,isign,FFTW_FLAG)

dfftw_execute(plan)

CSE 403, Spring 2008, Alverson

Pattern: Flyweight

a class that has only one instance for each unique state

FlyweightFactory /" o/ants wa Flyweight
OperafionfextrinsicSigte}

GetFlyweightikey) 3

if {fhyweight[key] exists) {
return existing flyweight;

jelse
create new ﬂwfreight:
add it to pool of fyweights,
retum the new Ifywelg?lt;

ConcreteFlyweight UnsharedConcreteFlyweight
Operation{extrinsicState) Operation{extrinsicSiate)
intrinsicState allState:

CSE 403, Spring 2008

Client

Problem of redundant objects

e Problem: redundant objects can be inefficient
o Many objects have same state

o Example: string/text structures used by document editors,
error messages

o Example: File objects that represent the same file on disk
o new File("'notes.txt")
o new File("'notes.txt")
o new File(*‘notes.txt™)

Or point objects that represent points on a grid

o new Point(x,y) —
o new Point(5.23432423, 3.14) | Why can't this be solved

CSE 403, Spring 2008, Alverson by US|ng a Const?

Flyweight pattern

o flyweight: an assurance that no more than one
Instance of a class will have identical state

o Achieved by caching identical instances of objects to
reduce object construction

o Similar to singleton, but has many instances, one for
each unigue-state object

o Useful for cases when there are many instances of a
type but many are the same

CSE 403, Spring 2008, Alverson

Implementing a Flyweight

e Flyweighting works best on immutable objects

pseudo-code:
public class Flyweighted {

o static collection (list) of instances
o private constructor
o static method to get an instance:
o If (we have created this kind of instance before),
get it from the collection and return it
o else,
create a new instance, store it in the collection and
return it

CSE 4}03, Spring 2008, Alverson

Flyweight sequence diagram

client Flyweight instance: Fhyweight

L ! i
getinstancelangs) ! |

if [collection does not contain an instance forthese angs]
1

NEw{ 4G5 :

instance | |
~store into collection (instance)

{77

glse

]'|_

retrieve instance fram collection

|_|_|:H

instance
{: ___________________________

|
|
|
|
|
|
|
1
sehd messages to instance as appropriate :

i

CSE 403, Sprin

Implementing a Flyweight

public class Flyweighted {
private static Map Instances;

private Flyweighted() {}

public static synchronized Flyweighted
getinstance(Object key) {
IT (linstances.contains(key)) {
Flyweighted fw = new Flyweighted(key);
instances.put(key, fw);
return fw;
} else {
return i1nstances.get(key);
by

}
}

CSE 403, Spring 2008, Alverson

Flyweight exercise

o Consider your projects. Is there an opportunity
to use a flyweight?

CSE 403, Spring 2008, Alverson

Pattern: Iterator

objects that traverse collections

Client
Waing..)
|
ftarator
Mexdf)
First()
Last()
Hode No deCollection Iteratori
narne list node Collection
Marme() Addiode(..) currentlndex
Moder..] GetMaode(..)
CSE 403, Spring 2008, Alvers '

| return new Iterat0r1(thisﬁ

lterator pattern

e Iterator: an object that provides a standard way
to examine all elements of any collection

e Benefits:

CSE 403, Spring 2008, Alverson

lterators In Java

o All Java collections have a method 1terator that

returns an iterator for the elements of the collection

e Can be used to look through the elements of any
kind of collection (an alternative to for loop)

List<Account> list = new ArrayList<Account>();
/... add some elements ...

for (Iterator<Account> itr = list.iterator(); itr.nasNext();) {
Account a = itr.next();

System.out.printin(a);

}SE 403, Spring 2008, Alverson

Adding your own iterators

e When implementing your own collections, it can
be convenient to use iterators.

class List {
public:
intsize() {...}
boolean isEmpty() {...}
ListElement™ get(int index) {...}

What do you need to know
to write next()?

public class Listlterator {
Int currentindex;
public: C_an ther_e be |
boolean hasNext() {...} different iteration
ListElement* first() {...} strategies?
ListElement™* next() {...}
ListElement™* current() {...

}

Pattern: Strategy

objects that hold alternate algorithms to solve a

problem
Context {:f rategy p- Strategy
Contextinterface() Algorithminterfacef}
AN

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

CSE 4C Algorithminterface() Algorithminteriace() Algorithminterface()

Strategy pattern

e strategy: an algorithm separated from the object
that uses it, and encapsulated as its own object

o Each strategy implements one behavior, one
Implementation of how to solve the same problem

o Separates algorithm for behavior from object that
wants to act

o Allows changing an object's behavior dynamically
without extending / changing the object itself

o Examples?

Strategy example: Card player

// Strategy hierarchy parent

// (an interface or abstract class)

public interface Strategy {
public Card getMove();

}

// setting a strategy

playerl.setStrategy(new SmartStrategy());

/[using a strategy

Card plmove = playerl.move(); // uses strategy

All strategies must declare (the same) interface common to
all supported algorithms

Selecting a design pattern = w

o Consider how design patterns solve design problems
o You'll need to get familiar with them first

e Consider design patterns of similar purpose to select the
one that best fits your situation
o Creational
o Structural
o Behavioral

e Consider the aspects of your system most likely to
change, evolve, be reused

Think of an example of where you could apply a pattern to
your project.

CSE 403, Spring 2008, Alverson

