
Design Patterns

CSE 403, Spring 2008, Alverson

With material from Marty Stepp 403 lectures.

Design challengesg g

Designing software is hard! One must find:
o a good problem decomposition
o a design with flexibility, modularity and eleganceo a design with flexibility, modularity and elegance

Designs often emerge from trial and error
Successful designs do existSuccessful designs do exist
o two designs they are almost never identical
o they exhibit some recurring characteristics

CSE 403, Spring 2008, Alverson

Design patternsg p

A design pattern is a time-tested solution to aA design pattern is a time tested solution to a
common software problem

Patterns enable a common design vocabulary,
improving communication, easing implementation

d d t tiand documentation

Patterns capture design expertise and allow thatPatterns capture design expertise and allow that
expertise to be transferred

CSE 403, Spring 2008, Alverson

Online Readingsg

My latest favorite survey of common patterns:My latest favorite survey of common patterns:
http://sourcemaking.com/design_patterns

[Optional] See the “References” link on the class
web page for a number of others

CSE 403, Spring 2008, Alverson

Gang of Four (GoF) patternsg () p
Creational Patterns (abstract object instantiation)
Ab t t F t F t B ild P t tAbstract Factory, Factory, Builder, Prototype
Singleton

Structural Patterns (combine objects)
Adapter, Bridge, Composite, Decorator, Façade,
Flyweight ProxyFlyweight, Proxy

Behavioral Patterns (communication btwn objects)
Chain of responsibility, Command, Interpreter,
Iterator, Mediator, Memento, Observer, State,
Strategy Template Method Visitor

CSE 403, Spring 2008, Alverson

Strategy, Template Method, Visitor

Pattern: Singleton
a class that has only one instance

CSE 403, Spring 2008, Alverson

Restricting object creationg j
Problem: Sometimes we will really only ever need
one instance of a particular classone instance of a particular class.
o We'd like to make it illegal to have more than one
o Examples: keyboard reader, printer spooler, gradebook

Why we care:
Creating lots of objects can take a lot of timeo Creating lots of objects can take a lot of time

o Extra objects take up memory
o It is a maintenance headache to deal with different

objects floating around if they are the same

CSE 403, Spring 2008, Alverson

Singleton patterng p
singleton: an object that is the only object of its
typetype
o Ensures that a class has at most one instance
o Provides a global access point to that instance

o Takes responsibility of managing that instance away
from the programmer (illegal to construct more
instances)instances)

o Provide accessor method that allows users to see the
(one and only) instance(one and only) instance

o Possibly the most known / popular design pattern!

CSE 403, Spring 2008, Alverson

Singleton patterng p
singleton: an object that is the only object of its
typetype
o Ensures that a class has at most one instance
o Provides a global access point to that instance

o Takes responsibility of managing that instance away
from the programmer (illegal to construct more
instances)instances)

o Provide accessor method that allows users to see the
(one and only) instance(one and only) instance

o Possibly the most known / popular design pattern!

CSE 403, Spring 2008, Alverson

How is this different from a
global variable?

Implementing singleton (one
instantiation of the pattern…)

Make constructor(s) private so that they can
not be called from outside

instantiation of the pattern…)

not be called from outside

Declare a single static private instance of g p
the class

Write a public tI t () or similarWrite a public getInstance() or similar
method that allows access to the single instance
o possibly protect / synchronize this method to ensureo possibly protect / synchronize this method to ensure

that it will work in a multi-threaded program

CSE 403, Spring 2008, Alverson

Singleton sequence diagramg q g

CSE 403, Spring 2008, Alverson

Singleton example
Consider a singleton class RandomGenerator that
generates random numbers

g p

generates random numbers

public class RandomGenerator {
private static RandomGenerator gen = new RandomGenerator();private static RandomGenerator gen new RandomGenerator();

public static RandomGenerator getInstance() {
return gen;return gen;

}

private RandomGenerator() {}private RandomGenerator() {}
...

}

CSE 403, Spring 2008, AlversonIs there a problem with this class?

Singleton example 2
Variation: don't create the instance until needed

g p

public class RandomGenerator {
private static RandomGenerator gen = null;

public static RandomGenerator getInstance() {
if (gen == null) {

gen = new RandomGenerator();
}}
return gen;

}

...
}

What could go wrong with this version?
CSE 403, Spring 2008, Alverson

What could go wrong with this version?

Singleton example 3
Variation: solve concurrency issue by locking

g p

public class RandomGenerator {
private static RandomGenerator gen = null;

public static synchronized RandomGenerator
getInstance() {

if (gen == null) {
gen = new RandomGenerator();gen = new RandomGenerator();

}
return gen;

}

...
}

CSE 403, Spring 2008, Alverson

Is anything wrong with this version?

Singleton example 4
Variation: solve concurrency issue without
unnecessary locking

g p

unnecessary locking
public class RandomGenerator {

private static RandomGenerator gen = null; p g ;

public static RandomGenerator getInstance() {
if (gen == null) {

synchronized (RandomGenerator.class) {synchronized (RandomGenerator.class) {
// must test again -- can you see why?
// sometimes called test-and-test-and-set
if (gen == null) {

gen = new RandomGenerator();gen new RandomGenerator();
}

}
}
return gen;

CSE 403, Spring 2008, Alverson

return gen;
} }

Singleton exerciseg
Consider your projects. What classes could be
a singleton in this system?a singleton in this system?

CSE 403, Spring 2008, Alverson

Pattern: Factory
(a variation of Factory Method Abstract(a variation of Factory Method, Abstract

Factory)

a class or method used to
create objects easily

CSE 403, Spring 2008, Alverson

Factory patterny p
factory: a class whose job is to easily create
and return instances of other classesand return instances of other classes

o Instead of calling a constructor, use a static method in g ,
a "factory" class to set up the object

o Allows you to separate the construction informationo Allows you to separate the construction information
from the usage information (improve cohesion, loosen
coupling), making creation and management of
bj iobjects easier

o Allows you to defer instantiation of the subclass

CSE 403, Spring 2008, Alverson

y

Separate creation from usep

Client Factory
Create
me an

I’ll
base
it on Client Factory

Input
Reader

the
type
of
input

new
object 1 C

re

U
s

input

new
object 2

eates

es

new
object 3

CSE 403, Spring 2008, Alverson

Separate creation from usep

Client Factory
Create
me an

I’ll
base
it on Client Factory

input
Reader

the
type
of
input

new
object 1 C

re

U
s

input

new
object 2

eates

es

new
object 3

Objects should either make

CSE 403, Spring 2008, Alverson

Objects should either make
other objects or use other
objects but never both.

Factory sequence diagramy q g

CSE 403, Spring 2008, Alverson

Factory implementationy p
When implementing a factory of your own, here’s one

scheme:scheme:

The factory itself should not be instantiatedy
o make constructor private

iThe factory uses static methods to construct components

The factory should offer as simple an interface to clientThe factory should offer as simple an interface to client
code as possible

CSE 403, Spring 2008, Alverson

Factory exampley p
public class ImageReaderFactory
{{

public static ImageReader createImageReader(
InputStream is) {
int imageType = figureOutImageType(is);

switch(imageType) { (g yp) {
case ImageReaderFactory.GIF:

return new GifReader(is);
case ImageReaderFactory JPEG:case ImageReaderFactory.JPEG:

return new JpegReader(is); // etc.
}

CSE 403, Spring 2008, Alverson

}
}

Pattern: Decorator
objects that wrap around other objects to add

useful features

CSE 403, Spring 2008, Alverson + scrollbars

Decorator patternp
decorator: an object that modifies behavior of, or
adds features to another objectadds features to, another object

o Adds additional responsibilities to an objecto Adds additional responsibilities to an object
dynamically

o The object being "decorated" usually does not
explicitly know about the decorator

o Decorator must maintain the common
i t f f th bj t itinterface of the object it wraps up

CSE 403, Spring 2008, Alverson

What are two ways in which this
differs from inheritance?

Decorator example: GUIp
Using
inheritanceinheritance

CSE 403, Spring 2008, Alverson

Using decorator objectsg j
Using aggregation instead
of inheritanceof inheritance

Widget* aWidget = new BorderDecorator(
new HorizontalScrollBarDecorator(
new VerticalScrollBarDecorator(

new Window(80, 24))));

CSE 403, Spring 2008, Alverson

(,))));
aWidget->draw();

Another decorator example: I/Op
• InputStream class has only public int read() method

to read one letter at a timeto read one letter at a time

• Decorators such as BufferedReader add additional
functionality to read the stream more easily

I tSt i Fil I tSt ("h d d t t")InputStream in = new FileInputStream("hardcode.txt");
InputStreamReader isr = new InputStreamReader(in);
BufferedReader br new BufferedReader(isr);BufferedReader br = new BufferedReader(isr);
// InputStream only provides public int read()
String wholeLine = br readLine();

CSE 403, Spring 2008, Alverson

String wholeLine = br.readLine();

Pattern: Facade
provide a uniform interface to a set of other

(alternative) interfaces
or

wrap a complicated interface with a simpler onewrap a complicated interface with a simpler one

CSE 403, Spring 2008, Alverson

Facade patternp
Problem: a current interface is too complicated
t il OR th l h i tto easily use OR there are several choices to
use for a subsystem; we want to allow the use of
eithereither

facade: objects that provide a uniform interface j p
to a complicated or set of other alternative
interfaces

Examples from Cray:
MySQL package or PostgreSQL package

CSE 403, Spring 2008, Alverson

MySQL package or PostgreSQL package
FFT math library from Fast FFT or FFTW or …

Cray CRAFFT library exampley y p
crafft_z2z1d(n,input,isign)

z2z1d_simple1_inplace(n,input,isign)

z2z1d_simple_internal(n,input,input,isign,1,1)

dfftw_plan_dft_1d(plan,n,input,output,isign,FFTW_FLAG)

dfftw_execute(plan)

CSE 403, Spring 2008, Alverson

Cray CRAFFT library exampley y p

crafft z2z2d(n1,n2,input,ld in,output,ld out,isign,work)

z2z2d_adv1(n1,n2,input,ld_in,output,ld_out,isign,work)

crafft_z2z2d(n1,n2,input,ld_in,output,ld_out,isign,work)

z2z2d_adv_internal(n1,n2,input,ld_in,output,ld_out,isign,1,1,work
)

dfftw_plan_many_dft(plan,rank,n,howmany,input,inembed,istride,idist,output,onembed,ostride,odist,isign,FFTW_FLAG)

dfftw_execute(plan)

CSE 403, Spring 2008, Alverson

Pattern: Flyweight
a class that has only one instance for each unique state

CSE 403, Spring 2008, Alverson

Problem of redundant objectsj
Problem: redundant objects can be inefficient
o Many objects have same stateo Many objects have same state

o Example: string/text structures used by document editors,
error messages

o Example: File objects that represent the same file on diskp j p
new File("notes.txt")
new File("notes.txt")
new File(“notes.txt”)

Or point objects that represent points on a grid
new Point(x,y)

Wh ’t thi b l d
CSE 403, Spring 2008, Alverson

new Point(5.23432423, 3.14) Why can’t this be solved
by using a const?

Flyweight patterny g p
flyweight: an assurance that no more than one
instance of a class will have identical stateinstance of a class will have identical state

o Achieved by caching identical instances of objects to y g j
reduce object construction

o Similar to singleton but has many instances one foro Similar to singleton, but has many instances, one for
each unique-state object

U f l f h h i fo Useful for cases when there are many instances of a
type but many are the same

CSE 403, Spring 2008, Alverson

Implementing a Flyweightp g y g
Flyweighting works best on immutable objects

pseudo-code:
public class Flyweighted {public class Flyweighted {
o static collection (list) of instances
o private constructor

t ti th d t t i to static method to get an instance:
if (we have created this kind of instance before),
get it from the collection and return it
else,
create a new instance, store it in the collection and
return it

CSE 403, Spring 2008, Alverson

return it
}

Flyweight sequence diagramy g q g

CSE 403, Spring 2008, Alverson

Implementing a Flyweightp g y g
public class Flyweighted {

private static Map instances;p p

private Flyweighted() {}

public static synchronized Flyweighted
getInstance(Object key) {

if (!instances.contains(key)) {
Fl i ht d f Fl i ht d(k)Flyweighted fw = new Flyweighted(key);
instances.put(key, fw);
return fw;

} else {} {
return instances.get(key);

}
}

}
CSE 403, Spring 2008, Alverson

}

Flyweight exercisey g
Consider your projects. Is there an opportunity
to use a flyweight?to use a flyweight?

CSE 403, Spring 2008, Alverson

Pattern: Iterator
objects that traverse collections

CSE 403, Spring 2008, Alverson

Iterator patternp
iterator: an object that provides a standard way
to examine all elements of any collectionto examine all elements of any collection

Benefits:

CSE 403, Spring 2008, Alverson

Iterators in Java

All Java collections have a method iterator thatAll Java collections have a method iterator that
returns an iterator for the elements of the collection
Can be used to look through the elements of any
kind of collection (an alternative to for loop)

List<Account> list = new ArrayList<Account>();
// ... add some elements ...

for (Iterator<Account> itr = list.iterator(); itr.hasNext();) {
Account a = itr.next();
S t t i tl ()

CSE 403, Spring 2008, Alverson

System.out.println(a);
}

Adding your own iteratorsg y
When implementing your own collections, it can
be convenient to use iteratorsbe convenient to use iterators.

class List {
public:

int size() {…}
boolean isEmpty() {…}

ListElement* get(int index) {…}
}}

public class ListIterator {
i

What do you need to know
to write next()?

int currentIndex;
public:

boolean hasNext() {…}
ListElement* first() {…}

Can there be
different iteration
strategies?

CSE 403, Spring 2008, Alverson

ListElement first() {…}
ListElement* next() {…}
ListElement* current() {…}

}

g

Pattern: Strategy
objects that hold alternate algorithms to solve a

problem

CSE 403, Spring 2008, Alverson

Strategy pattern
strategy: an algorithm separated from the object
that uses it and encapsulated as its own object

gy p

that uses it, and encapsulated as its own object

o Each strategy implements one behavior, one
implementation of how to solve the same problemimplementation of how to solve the same problem

o Separates algorithm for behavior from object that
wants to actwants to act

o Allows changing an object's behavior dynamically
itho t e tending / changing the object itselfwithout extending / changing the object itself

Examples?

CSE 403, Spring 2008, Alverson

Strategy example: Card playerSt ategy e a p e Ca d p aye
// Strategy hierarchy parent
// (an interface or abstract class)
public interface Strategy {
public Card getMove();public Card getMove();

}

// setting a strategy// setting a strategy
player1.setStrategy(new SmartStrategy());
// using a strategy
Card p1move = player1.move(); // uses strategy

All t t i t d l (th) i t f t
CSE 403, Spring 2008, Alverson

All strategies must declare (the same) interface common to
all supported algorithms

Selecting a design patterng g p
Consider how design patterns solve design problems

You’ll need to get familiar with them firsto You ll need to get familiar with them first

Consider design patterns of similar purpose to select the
one that best fits your situationone that best fits your situation
o Creational
o Structural

Behavioralo Behavioral

Consider the aspects of your system most likely to
change evolve be reusedchange, evolve, be reused

Think of an example of where you could apply a pattern to
your project

CSE 403, Spring 2008, Alverson

your project.

