TutorIM
Tom Allen (myron13@cs.washington.edu)

January 9, 2007

CSE 403

Operational Concepts
When trying to tutor someone online, it can be hard to convey concepts and minutiae. A chat client can display a single flow of text, but sometimes tutors need to be able to draw diagrams to illustrate ideas as well as be able to show corrections to a paper without copying and pasting text from the document. The core of the program is to combine the main feature of instant messaging with synchronized windows to show drawings and a text document that is editable.

The application revolves around three components: instant messenger, shared drawing space, and a text editor. The messenger works as expected, but the shared drawing space would display the same image for both users and would be modifiable by either the student or the tutor. The drawing functions would be limited to simple tasks such as pencil and lines. For the text editor window, one of the users would open the text file, which would then display on both users’ screens. The tutor would then be able to highlight portions of the text and even type in comments that could be saved by the student.

The project is not attempting to make a full-fledged substitute for Microsoft Word or AIM (or emacs and gaim, for the linux-inclined), but enough of each to allow for distance learning. The scope also does not tackle a network for finding tutors, so it can be assumed that the student and tutor know each other’s usernames beforehand.
System Requirements

Main Features:

· Centralized server for user authentication
· Instant text messaging

· Drawing window that is modifiable by both clients

· Basic text editor window that when modified by one side, displays on the other

· Synchronized highlighting in the text window

· Save ability for all three windows

[image: image1.png]Whiteboard Text Editor
7
[
Highlight Comrent
Chat

Send

Figure 1

System and Software Architecture

The application will be programmed in Java, hopefully allowing for easy cross-platform portability. The network communication would use TCP, since none of the applications are incredibly time-sensitive. The client would be able to save the text from the chat or editor windows as plaintext files, while the drawing window would be able to be saved as a bitmap. While these formats may not be the best for our purposes, reading and writing doc and jpeg files adds unnecessary risks into the project. These access features could be added to if the project reaches its goal early.

The authentication server would be in Java, along with an unspecified database language. The database would contain the information required to validate usernames and passwords, so that all parties involved can be sure they are talking to who they think they are. SSL could be used to make sure the transport layer between the client and server remains secure during authentication.

While the client would interact with the server in order to authenticate, when using chat, drawings, and text editor sharing, the clients would send directly to each other. This will lower security, but increase performance, as the authentication server would not have to relay all the data between clients. Before the two clients connect, both of them would have to authenticate with the server to receive information on the other.

[image: image2.png]Database

Server

Internet

Client

Client

Figure 2

Lifecycle Plan

Above all, this project is an instant messenger, so the authentication server and chat client are the highest risk elements. After these two components are working, the whiteboard and text editor should be tackled.
Milestone 1: Basic chat client and authentication server

By week 4, we should aim to have a chat client that can connect to a remote server, authenticate, and then communicate with other chat clients on that server.

Milestone 2: Whiteboard window

By week 6, the application should be able to draw and see the other person’s drawings, along with erasing.
Milestone 3: Synchronized text editor

At the end of week 8, the text editor should be working and features will no longer be added to the project. Week 9 will be spent hammering out any leftover bugs so that a deliverable product will be ready by the end of week 9.
With 5-7 people, this project should be able to be completed in 9 weeks. Hopefully, due to the discrete nature of milestones 2 and 3, they should be able to be worked on at the same time. At least one of the group members should have experience with databases, while most of the others should be comfortable with programming application layer network programs.

Feasibility Rationale

Assumptions:
· Clients have Java 1.5 (5.0) installed. To have the portability across operating systems that this program strives for, a JVM must be installed on all the clients’ machines.
· Clients have broadband internet. While it may be possible to run this program on dialup, the constant image transfer would cause significant slowdown.

· Clients are not behind a NAT router. If a client is behind a router with NAT, then there could be problems establishing a connection with other clients, as packets may be dropped.
Risks:

· Feature creep may be a problem since this project is more of a mixing of different features that exist in other programs. There is a risk that we could think of other features that would benefit the ideal while programming, increasing the workload.

Since a basic text format is being used, we cannot add very much formatting to the saved files from the text editor. All of the highlighting and comments would either have to not be saved or somehow be formatted in the plaintext. This is necessary, since using a more complex format would tack on considerable development time.
Other features such as spell check and more advanced drawing functions would be nice to have, but are not entirely necessary for the objectives of the project.
