Kevin Huang

Sam Van Dalfsen

CSE 403

Assignment #1

Team Monkeys: TestZilla

Life Cycle Objectives

Operational Concepts

Test manager systems are used by QA (quality assurance) staff to assist them in testing different software for bugs and issues. The available test managers are only marginally customizable and generally feature a cumbersome user interface. Integrating a new test manager requires conforming to strict guidelines for test case fields, often different than what a QA team has outlined for their test plan. A company has two options when this occurs: (1) download an existing test manager system and use in-house development to alter the test manager to fit its own needs or (2) alter the test plan so that all the organizational information fits in the fields the test manager provides. Both solutions are costly. Our aim is to create a test manager that offers high levels of field customization with an easy to use design that will interface with current error tracking systems. By allowing on-the-fly field customization, anyone who uses the product should be able to quickly adapt the test manager to fit their needs. TestZilla will allow QAs to log on and keep track of their test plans and test cases, generate test reports and import/export their test information into a spreadsheet application. TestZilla will not be a standalone issue tracker or directly interface with automated testing (though it could be used to keep track of automated testing runs).

System Requirements

TestZilla has six main components:

· Test cases

· Test plans

· Reports
· Import/Export to spreadsheet

· External bug tracking

· User groups

At its core a TestZilla has a database of test cases and test plans. A test case is comprised of a single test (description and instructions for testing) along with priority, an ID number, and a summary. Often test cases will also contain information about which product/feature/component it aims to test (categorizing of test cases by areas of the application will be customizable). A group of test cases comprise a test plan. Often, test plans are tests grouped by application feature or priority. The user will generate reports based off testing results to help visualize project testing status.

TestZilla will have the ability for the user to create, edit and copy test cases. They can also create, edit and copy test plans using existing test cases. When adding test cases to a test plan the user will be able to filter available test cases by any of the fields defined when creating a test case. Alternatively, the user can assign a test case to an existing test plan as they create new test cases. To facilitate bulk changes to test cases users will be able to import and export test cases from a spreadsheet using a predefined layout.

The test manager system will be able to set up user accounts with group membership. Test plans can be assigned to be run by different users groups. While running a test plan, the user will be presented with a series of test cases, the user can perform the test case delegated and report back whether if the test case passed or failed. If a test fails the user will enter information about what aspect of the test failed. A new bug is then opened in an external issue tracker, and a hyper-link is created to link the failed test case to the bug report. If the test plan was assigned to a group, all users in the group will be able to complete the tests. The server will regulate the delegation of tests to keep users from running the same test cases. Once test plans have been run, users will be able to generate statistics and graphs to report on the status of a project.

A sample mock up of a client view can be seen in figure 1.

[image: image1.png]Welcome, vandalf sian out

estZilla gy o ETRETRET

Create A Test Plan

Filter Cases By:
Keyword: Product: | SelectaProduct_ v| Priority:[P1_v|

D Prioity Summary Gl
337 Pt Correct mouseover button highlighting Main Ul
337 Pt Correct mouseover button hightighting Main Ul

1337 P Correct mouseover button highligh
1337 P Correct mouseover button highligh
1337 P Correct mouseover button hightigh

o

[m]

o

[m]

o

O B Pt Correct mouseover button highiigh

O 17 et Correct mouseover button highlighting
O 7 et Correct mouseover button highlighting
O 17 Pt Correct mouseover button highligh

O 7 et Correct mouseover button highligh

O 17 Pt Correct mouseover button highligh

g w®Bw Pt Correct mouseover button highligh

O s Pt Correct mouseover button highlighting
O 1w et Correct mouseover button highligh

[SelectAll|[SelociNons][AddtoTestPian

Figure 1 – The TestZilla interface mock up.

System and Software Architecture

The front-end of our test manager system will be a website. Clients will be able to access the test manager server via HTTP using a LAN or the internet. The server will contain two SQL databases and a Ruby on Rails or PHP back-end. The system will interact as shown in Figure 2.

[image: image2.png]admin

web
interface

user

web
interface

Import From Spreadsheet

Add Test Case

Create Test Plan

Export to Spreadsheet

< Run Test Plan

Test Case Restits.

< Generate Test Reports.

server

rails/PHP
backend

ro
| S |

test plan
database

external error
tracking tool

(Bugzilla, etc.)

ro
| S |

test case
database

e

Figure 2 – The TestZilla software architecture

Lifecycle Plan

We will have a total of eight weeks to work on this project (after the proposal stage). During the first week and a half, we will spend time fleshing out our architecture and making sure the team is all on track. We will also divide the project into modules and distribute the work to level our resources. The rest of the time will be spent developing and coding depending on our code/module dependencies. Of course, as each feature or function is completed we will try to get people (our own team or others) to test these features so we can continue fixing bugs or improving the design. Our goal is to have a functional beta test manager system by the beta release date (week 7). Before we move from the beta release to the final, we will of course have another meeting where the entire team reviews the project as a whole before we spend the last 2 weeks polishing the test manager. During this whole process, should we will always try to be reflective of our design decisions and make adjustments to our specifications if necessary. A rough development schedule is outline in table 1.

Table 1: Schedule outline for TestZilla
	Week (after proposal)
	Activity

	1
	Requirements and planning

	2
	Development

	3
	

	4
	

	5
	Beta Release Due

	6
	

	7
	

	8
	Final Release Due

We estimate that completing TestZilla will require 6-7 developers. One of whom should have a working knowledge of database programming
Feasibility Rationale

Although this project may be a little complex, it should be doable with a small group of students that are capable with web development technologies. If we split up the work into different components (as discussed above) then the students should be able to complete the test manager system on time. Risks to consider include our programmer’s familiarity with the chosen language for development, our server and software resources, ease of integration with error tracking and spreadsheet programs for the import/export features. As a team project, group cohesiveness is also a factor to consider, as everybody usually has different programming styles and processes.

Our assumptions are that QA staff and their managers are competent enough to customize our web interface to their advantage. Other assumptions include the companies’ willingness to customize the software themselves than to hire someone to develop a solution based off their specifications. Ideally, we would have our own error and issue tracking system to work with our test manager system, but due to time constraints, we have decided to create a product that will allow interface with currently existing third party software.

