
· Operational Concepts

Currently the web is a mess of disparate articles and tutorials on a variety of topics. Finding a useful article on a specific topic can take quite some time and often can lead a user to an article with inaccurate or questionable information. We propose a system that would provide a central place where users could find this information in a fast and easy way without having to wade through millions of websites and articles to find what they are looking for.
Our proposal is to develop a “how-to” website that allows users to create and maintain articles on how to accomplish any task. The actual topics of these articles will be chosen by the users and will also be maintained by the user base. This will work somewhat like a common wiki; however, unlike a wiki, users will be more accountable for the changes that they make.
Anyone will be able to view and read articles; however, only registered users will be able to create or edit site content. In effect, this will make it harder to edit site content and help prevent vandalism since the user will be more accountable for the articles that they change. At the same time, this system will also give credit for the contributions of author and editors of an article.
A significant flaw in the current implementations of wiki pages is the lack of accountability of users and the ease of editing and changing content. These shortcomings, as novel as they seem at first glance, have made wikis unreliable and often vulnerable to vandalism. Wikipedia, the largest and most well-known wiki on the web, has even released statements warning students not to use their website due to this problem. As stated in “Avoid Wikipedia, warns Wikipedia Chief” from theregister.co.uk, “Founder Jimi ‘Jimbo’ Whales … said that he gets 10 e-mail messages a week from students who complain that Wikipedia [due to false or unsound content] has earned them failing grades.” Our proposed system would discourage this kind of vandalism by making users take an extra step before they may edit content.
Also, unlike common wikis, our proposed system will incorporate a template system that will allow the novice user as well as advanced user to quickly and easily create content and post articles in a meaningful and presentable fashion without having to learn a cumbersome markup language.

Even though it would be built for anyone and everyone, it would prove to be especially beneficial to small to medium sized companies because it would allow them to create and distribute manuals, user guides, and references without much overhead while at the same time allowing their user base to contribute in order create more rich and complete content.
· System Requirements
There are essentially two different types of users:

The anonymous user can use this site to view, rate, and print “how-to” articles. They will be able to navigate different categories and search for articles they are looking for, as well as rate the articles and leave comments.
The other kind of user is the registered user. In addition to all the abilities of the anonymous user, the registered user will also be able create and edit “how-to” articles. Each registered user will have a user profile which includes information such as their name, email, and other optional personal information.
The user profile system will give articles written and edited by users more credibility as user will be able to see information about the authors and editors, such as how many articles they’ve written or edited as well as their personal rating and their credentials.

[image: image1.png]ot P

Tt]

e bt by s e et g bt e ot
£ TR0 e e et ey et

Figure 1 – Here is an example of what the index of the site may look like.
· System and Software Architecture

While we want to distinguish our site from other wiki sites, there is a significant amount of functionality and features that we will want to reference from already established wiki architectures. Wikipedia for example is powered by open source software created by MediaWiki. MediaWiki is open-source and therefore will give us a solid groundwork of established code to reference in the development process.
Since MediaWiki is written in PHP, and also because PHP provides an easy way to access and manipulate databases such as MySQL, we purpose that the project be written in PHP utilizing a MySQL database. PHP and MySQL are widely supported by web hosts and are mature enough architectures to be reliable for a project of this nature. Also, since PHP resembles JAVA in many ways, it should be a relatively simple language to learn for those who are not familiar with it.
· Lifecycle Plan

This project is easily broken down into modules which will be prioritized by their significance to the project. For instance, our core program will be based on four modules: database design and manipulation, display of wiki pages, category creation and navigation, and wiki editing. We believe that these four modules are the minimal necessary pieces to create a live functional site that will provide the core functionality of the wiki. For that reason, all of our resources will be distributed accordingly into accomplishing these tasks first. At that point, we could potentially have our first release.

Before beta release, we have a total of nine modules that we want to implement. On top of the four core modules, we also want to implement user accounts, ratings systems, search capabilities, templates, and a history module. The latter five hold less significance than the prior; however, they are also required in order for the project to function in accordance with the goals which we have set forth.
Once we have established a stable release of our nine essential modules, only then will we start adding new modules with added functionality. The flexibility of this project will allow us to take it in any of numerous directions, and for that reason, our project team will always have content to work on.
Ideally, we would have a total of eight engineers working on this project. For the first half of the project, we would have two engineers working on each of the four core modules. The same goes for the second half of the beta release, where we would have one or two engineers on each of the remaining modules. This strategy would be used throughout the lifecycle of the product.

[image: image2.png]Core Modules Essential Modules

-
Rating System
x J

1 J
Categori

· Feasibility Rationale

Since we already have the framework for an established wiki, we can use this as a reference in developing our design. This eliminates some of the risk in the feasibility of our ideas; if we know that it has been done before, we know that we can do it ourselves, and we know where to look for help.

Also, since the project is broken into many modules, it makes the project very scalable. It will be easy to add new modules with time permitting, or if we are short on time, then we can cut back on some of the less important modules.

As far as risks, we run the risk of not having enough user feedback during the development process. Since the architecture is hard to thoroughly test, we run the risk of missing early bugs that might affect the project downstream. We can minimize this risk by testing early and often. Also, by integrating often and running tests, we can identify problems early.
We also run the risk of getting too caught-up in implementing new and exciting features and not spending enough time making sure the basic framework works well. We can minimize this risk by strictly following our Life Cycle plan and only working on extended functionality once the essential modules are stable and have been completed.

We are assuming that we can finish, at least, the core modules in the time allotted and that the development team will be able to learn and develop in the architecture required to make the project function. We are also assuming that it is possible to create templates for the wikitext mark-up language which will be easy and intuitive for novice users to utilize.

Furthermore, we are assuming that we will be able to comprehend the basic functionality of the software, such as MediaWiki, that we will be referencing. We’ll need to get a basic understanding of the way in which these architectures work so that we may build upon them. This in itself may be challenging since code written by other people can often be confusing and hard to follow.
“The Team” presents

2007

How-To Wiki

CSE 403 – Project Proposal

Nathan Plesnicher, Brian Stone, Chris Kennewick

“The Team” | University of Washington - Department of Computer Science

