MapMaker
Easy fast web-based map creation

Max Aller and Giles Westerfield

Operational Concepts

Imagine you live in a rural area and you want to organize an event for friends at your home. Normally you’d describe to your friends the directions to your house, or simply give them your address and let them find their own way. In the digital era, this is becoming less common with the advent of route-finding services offered by Google, Yahoo, and MapQuest. However, even this is not always adequate, especially if you live in an area that is not well-characterized by automated map systems. There is currently no way to point out specific landmarks or detours to people on such a map system.
Enter MapMaker. MapMaker is a convenient construction tool that anyone with access to the internet can utilize to create a custom-designed map that can be easily distributed to others. The goal of this tool is to be easy, so that anyone with even a basic knowledge of computers could build a map to suit their purposes. College students could use it for pointing out good clubs; kids could use it to point out locations of soccer fields and baseball fields to parents (or where to pick them up after school); and hobbyists can use it to generate virtual maps.

There are some existing map services which allow users to work with real world maps, but MapMaker would provide a way for people to take full control of some of the advanced mapping API
s available without any programming knowledge.

System Requirements

[image: image1.wmf]Frontend

(

JavaScript

+

AJAX

,

HTML

)

Map API

Dynamic Code Server

(

PHP

/

JSP

/

ASP

/

Ruby

)

Database Server

(

PostgreSQL

/

MySQL

/

MSSQL

/

Oracle

)

[image: image2.png]m st [_map_|[_Sateie][_ryon
<R .) Brock.
= e o | Georgina
.
0 g
s & e Scugog
et Brttord-._ Guiimbury Utlidgs
D! X i
Now Many /N‘ejmﬁzvkel -
1 ay . - -
o Turn lef o the funy-looking inichureh Stoutte 2
statue on your right. Watch out e S
0r3 for construction from 9-5 mond pY
Al Markham ity <
(. piking
2 Scarborough
Caiedon N g I
v 7) 0 Ork - East vork
mpton’
| Toronto
caross: (/i il Etobicoke!
Mississauga
Guelph
: fiton)

fRariens

MapMaker has an extremely flexible feature set that can be expanded or cut as necessary to occupy a team of eight developers for six weeks. At the minimum, we will produce a user-friendly interface in which users can make and share maps with markers, tooltips (expandable info bubbles with images), and paths with ease. Going further, support for shaded polygons, custom icons, custom maps, custom path arrowheads, and various tweakable settings (scale level, panning limits) can be added. Other features, besides those directly inherent in the API, could be made available to the user. By default, created maps would only be kept for a short duration on the server, perhaps a week. But by creating an account with the site, the user could extend the duration of storage. We also hope to provide the ability to save a snapshot image of a map that the user can store locally for later retrieval.
[image: image3.wmf]Frontend

(

JavaScript

+

AJAX

,

HTML

)

Map API

Dynamic Code Server

(

PHP

/

JSP

/

ASP

/

Ruby

)

Database Server

(

PostgreSQL

/

MySQL

/

MSSQL

/

Oracle

)

While the primary elements of the server architecture shown above will definitely be required, we are flexible with the specific implementation of each component. For instance, the language used by the dynamic code server can be chosen based on the strengths of the development team. The outputted HTML to the front end would appear the same regardless of this choice. The database model is similarly flexible, provided that it is supported by the scripting language. The map API we implement will likely be Google Maps due to its extensive documentation and flexible coding, but we are open to examining other mapping systems, such as Yahoo, MSN Virtual Earth, and MapQuest. Development environments for the chosen scripting languages will vary by developer.
Lifecycle Plan

The nature of this project is such that there will be a few essential features that preclude the extensive development of numerous additional features of the project. One possible lifecycle design we could implement is following the spiral lifecycle until we establish the core functionality, at which point the team would switch to a staged delivery lifecycle to roll out new features periodically. Major milestones would include getting the first page up, configuring the servers, interfacing with the map API, adding our first feature, and finishing all the core features. At this point, we would undertake a risk analysis to determine what additional features we should implement. Possibilities are adding more features, taking advantage of multiple map APIs, supporting user accounts, and enhancing map-sharing capabilities.
There are many different roles that can be delegated to developers based on previous experience and preferences. The following tasks could be assigned: database management, frontend design, JavaScript coding, API interface and research, and backend dynamic coding. Integration is expected to be less of an issue with this project compared to others due to the modular nature of the project design.
Feasibility Rationale

We have a set of core features that should be easily achievable within the six week timeline. Upon completion of this basic functionality, we will rely on risk management to determine realistically which additional features should be pursued. Of course, the primary risk for the project is that we may not complete the basic features by the beta release, and we are assuming that the development team will be able to fill their roles and complete their respective tasks within the expected timeframe. In the course of further risk analysis, we may find that certain features are no longer achievable and will cut them as necessary.
Ultimately, we feel that this would be an educational and useful tool that will benefit many and further the abilities of the development team. In addition, we will learn about project management, team dynamics, and experience firsthand the nature of software development lifecycles.
Figure � SEQ Figure * ARABIC �1�. Creating a map like the one above and sharing it with friends would be a snap and possible without writing one line of code.

Figure � SEQ Figure * ARABIC �2�. This illustrates the relationship between components within the server architecture.

� EMBED Visio.Drawing.11 ���

� API: Application Program Interface: A set of calling conventions defining how a service is invoked.

PAGE
1

_1237039902.vsd
Frontend
(JavaScript+AJAX, HTML)

Map API

Dynamic Code Server
(PHP/JSP/ASP/Ruby)

Database Server (PostgreSQL/MySQL/MSSQL/Oracle)

