
Ryan McElroy
Jason Salameh

CSE 403

CSE 403 Proposal LCO

1.Operational Concepts:

• Overview:

Update Mailman mailing list software to version 3.0 by the addition of several major
features, namely:
 - Relational Database backend (MySQL or SQLite?)
 - User-centricity (currently Mailman is list-centric)
 - Flexible, extensible, skinnable web archiver
 - Flexible, extensible, skinnable web interface
In more or less that priority.

In addition, features can be drawn from the Mailman developers to-do list:
<http://www.gnu.org/software/mailman/todo.html>

• Impact:

Tens of thousands of companies, organizations, and internet sites use Mailman mailing lists,
and all Mailman installtions, unless heavily modified, are subject to the basic feature
limitations inherent to the original project. This long-due update to Mailman would have a
vast worldwide impact on a wide variety of companies and organizations, including all UW
mailing lists and mailing lists for companies such as Apple and Dell.

• Notes:

Development will occur in Python, a relatively new, interesting, and popular language.

2. System Requirements

A user of the updated Mailman software will have a considerably different experience than a user of the
current software. Currently, the software is list-centric, meaning that each list has its own page where a
particular user can sign up an email address, and a user must sign up separately for each list on the
site. Furthermore, to send email from another account, the user must also sign up the second account,
leading to perhaps unwanted duplicate emails. The new, user-centric model would emphasize user
accounts that allow multiple email addresses and one-click sign up for multiple lists on the same server.
A user could have different lists send emails to different email accounts, but accept email from any
account.

A user will also see the all-too-familiar "Mailman look" go away in favor of much more tightly integrated
Mailman web sites (Even Apple's installation is clearly identifiable). The current "slightly flexible"
architecture of the web front end will be replaced with a much more flexible and extensible module that
allows tight integration into existing websites.

An administrator of the updated Mailman software will also have a considerably different experience. By
using a relational database as the backend of the system, there will be a variety of administrative
improvements:

- Single-point changes with guaranteed system-wide visibility (in current versions some information is
duplicated in many places)
- Instant style updates (currently, lengthy archive "rebuilding" is required)
- Powerful searching, editing, and other administrative features that are currently prohibitive due to
flat-file data storage

Web designers will also be able to finally really customize the look and feel of Mailman web sites, due to
the addition of a much more flexible web archiver and web interface. Styling will be updated to use
modern standards-compliant HTML and CSS. The default look (below, left) will be easily updated to a
custom look (below, right), or even better than that.

3. System and Software Architecture

The major task is the integration of a relational database as the back-end of the Mailman software. The
current flat-file system will likely be maintained as an option, with the new default being the relational
database. This will require the addition of several abstracting layers -- first, a layer that abstracts the
infromation that the other parts of the code want from the method retrieving that information (be it
flat-file or database). Next, a database abstraction layer will allow the use of several different database
packages with the program. Finally, one or two database drivers will interface between the database
abstraction layer and a specific database, such as MySQL or SQLite.

The programming language will primarily be Python, with perhaps some PHP for the website front-end
integration (this is to be determined). The database to be used will be either MySQL or SQLite. Drivers
may be written for both.

4. Lifecycle Plan

We may use the Extreme Programming model to ensure high-quality, releasable code throughout
production

Major Milestones:

2007-06-08 -- Final Project Done
2007-05-25 -- Third Release -- Feature Complete, Integrate & Debug Only

2007-05-11 -- Second Release -- Major features implemented
2007-04-27 -- First Release -- Database back-end completed
2007-04-13 -- Architecture complete -- Interfaces and contracts defined

Ideally this project will include 8-12 engineers, divided into front-end and back-end groups. The back-
end group should have experience with relational database application design, while the front-end
group should have a bit of creative flair and web application development experience.

5. Feasibility Rationale

This is an ambitious project with many large risks. However, the risks are manageable because the
project is very scalable. For example, if it is determined that implementing a database back-end will
take longer than expected, there is an extensive todo list (see first section) where other reasonable
enhancements can be chosen from. One key assumption is that a database module will be able to be
developed without a complete rewrite of the Mailman codebase. If this assumption is false, then the
nature of the project may have to be revisited.

