
13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 1

Verification and Validation

CSE 403, Winter 2006
Software Engineering

http://www.cs.washington.edu/education/courses/403/06wi/

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 2

Readings and References

• References
» If You Didn’t Test It, It Doesn’t Work, Bob Colwell,

• IEEE Computer, May 2002 (Vol. 35, No. 5) pp. 11-13

• Acknowledgment
» much of the content of this lecture is derived from a similar

lecture by G. Kimura in an earlier instance of CSE 403

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 3

Verification and Validation

• Verification: “Did we build the system right?”
» Design and Implementation verification
» Does the system do specific tasks correctly?
» Developer / Tester has the knowledge

• Validation: “Did we build the right system?”
» Requirements validation
» Does the system do the required set of tasks?
» Customer / Integrator has the knowledge

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 4

Some Approaches to Verification

• Process
» Improving the likelihood that code is correct

• Testing
» A dynamic approach

• Proof of correctness
» Use formal analysis to show an equivalence

between a specification and a program

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 5

Process
• Process includes a broad set of ideas and

approaches
» Software inspections, walkthroughs, reviews
» Capability maturity model, ISO 9000
» etc

• Software correctness depends on thousands
and thousands of details being correct
» Good processes help you avoid making mistakes
» Processes are not magic

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 6

Testing vs. Proving
• Dynamic Testing

» Builds confidence (not certainty)
• Can only show the presence of bugs, not their absence

» Used widely in practice
» Costly

• Static Proving
» Proofs are human processes - mistakes are possible!
» Applicability is limited in practice
» Extremely costly

The proof is
in the pudding

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 7

Engineering: intelligent compromise

• Dynamic techniques are unattractive because
they are unsound
» you can believe something is true when it’s not

• Static techniques are unattractive because they
are often very costly
» and can overlook fundamental problems

• The truth is that they should be considered to
be complementary, not competitive

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 8

Testing

• Testing is by far the dominant approach to
demonstrating that code does what it supposed
to (whatever that means!)

• Testing is a lot like the weather
» everybody complains about it
» but nobody seems to do much about it

• However, unlike the weather, you can actually
do something about it!

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 9

Terminology

• An error
» mistake the programmer made in design or implementation

• leads to a defect
» inappropriate code

• that leads to a fault
» when a program's internal state is inconsistent with what is

expected

• that causes a failure.
» when the program doesn't satisfy its specification

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 10

Root cause analysis

• Track a failure back to an error
» Failures are precious information because an error

has finally become visible
• Identifying errors is important because it can

» help identify and remove other related defects
• other defects might not cause visible failures yet

» help a programmer (and perhaps a team) avoid
making the same or a similar error again
• If an error is made once, it is very likely made twice

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 11

Discreteness

• Testing software is different from testing widgets
» In general, physical widgets can be analyzed in terms of

continuous mathematics
» Software is based on discrete mathematics

• Why does this matter?
• In continuous math, a small change in an input

corresponds to a small change in the output
» This allows safety factors to be built in

• In discrete math, a small change in an input can
correspond to a huge change in the output

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 12

Kinds of testing

• Unit
• White-box
• Black-box
• Gray-box
• Bottom-up
• Top-down
• Boundary condition
• Syntax-driven

• Big bang
• Integration
• Acceptance
• Stress
• Regression
• Alpha
• Beta
• etc

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 13

Picking Test Cases

• A goal of picking a test case
is that it be characteristic of
a class of other tests

• That is, one case builds
confidence in how other
cases will perform

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 14

Cover the behavior space

• The overall objective is to
cover as much of the
behavior space as possible
» It’s an infinite space ...

• In general, it’s useful to
distinguish the notions of
common vs. unusual cases
for testing

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 15

Black box testing

• Treat the unit under test as a black box
» You can hypothesize about the way it is built, but

you can’t see inside it
• Depend on a specification, formal or informal,

for determining whether it behaves properly
• How to pick cases that cover the space of

behaviors for the unit?
» equivalence partitioning, boundary values, etc
» independent testers

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 16

Equivalence partitioning

• Based on input conditions
» If input conditions are specified as a range, you

have one valid class (in the range) and two invalid
classes (outside the range on each side)

» If specified as a set, then you can be valid (in the
set) or invalid (outside the set)

» Etc, etc, etc, etc

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 17

Boundary values

• Problems tend to arise on the boundaries of
input domains than in the middle

• So, extending equivalence partitioning, make
sure to pick added test cases that exercise
inputs near the boundaries of valid and invalid
ranges

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 18

Off-the-wall testing

• Real life and real people are not interested in
what you thought the specification said
» Life takes strange turns
» Users are not focused on treating your program

with kid gloves
• When your program is released in the wild, it

will get knocked around
» welcome the comments of the tester who pushes

your program to its limits, don’t shout them down

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 19

White box testing
• In this approach, the tester has access to the

actual software
» They needn’t guess at the structure of the code,

since they can see it
» The focus tends to shift from how the system

behaves to what parts of the code are exercised
• this can be very useful, and very misleading

• The tester’s challenge: Can you find a defect
that leads to a fault that causes a failure?

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 20

White box coverage

• In black box, the tests are
usually intended to cover
the space of behavior

• In white box, the tests are
usually intended to cover
the space of parts of the
program

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 21

Statement coverage

• One approach is to cover all statements
» Develop a test suite that exercises all of a program’s

statements
• What’s a statement?

max = (x > y) ? x : y;

if x > y then
max := x

else
max :=y

endif

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 22

Weakness

• Coverage may miss some obvious issues
» In this example a single test (any negative number

for x) covers all statements
» But it’s not satisfying with respect to input

condition coverage, for example

if x < 0 then

x := -x;

endif;

z := x;

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 23

More Coverage
• Edge coverage

» Use control flow graph (CFG) representation of a program
» Ensure that the suite covers all edges in the CFG

• Condition coverage
» Complex conditions can confound edge coverage

if ((p != NULL) && (p->left < p->right)) …

• Is this a single conditional statement in the CFG?
• How are short-circuit conditionals handled?

• Path coverage
» Edge coverage is in some sense very static
» Edges can be covered without covering paths (sequences of edges)
» Paths are better models of the actual execution

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 24

Path Coverage and Loops

• In general, we can’t bound
the number of times a loop
executes

• So there are an unbounded
number of paths in general
» We resort to heuristics like

those from black box testing
to exercise these loops

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 25

Some more practical aspects
• Who tests the tests, especially a large complicated test?

» If your test program generates random data, who confirms the results?
» Another example is testing trig functions.

• Testing the error cases can be a wider set of inputs. You have
two problems
» Making sure you have proper test coverage and
» Making sure the results are correct.

• Fault injection is another way of testing systems.
» For example, injecting I/O failures in a disk controller can test the error

cases for the disk driver and file system.
» Another example is injecting memory allocation errors, to see how

programs behave when they run out of memory.

13-Feb-2006 cse403-12-verify-validate © 2006 DW Johnson and University of Washington 26

Final note on testing

• It’s unsound and based on heuristics
• It’s extremely useful and important

• Good testing requires a special mindset
» “I’m going to find a way to make that system fail!”
» “My test case is a success - it found a system problem.”

• Good coding requires a special mindset
» “Nobody’s going to break my code!”
» “Good thing we found the failure now, not in real life.”

