Construction

CSE 403, Winter 2006
Software Engineering

http://www.cs.washington.edu/education/courses/403/06wi/

Some construction fundamentals

• Agreed-on coding standards
  » naming, layout, documentation
• Data-related concepts
  » scope, persistence, binding times
• Control-related
  » complexity, control structures, exceptions
• Errors and exceptions
  » assertions, defining and handling exceptions

More construction fundamentals

• Integration strategies
  » Unit-testing and debugging
  » Build and packaging practices
• Code tuning and performance measurement
• Programming tools
  » editors, IDE, interoperability
  » group work support tools (email, change visibility)
  » source code revision management
  » bug tracking

Readings and References

• Reading
  » Chapter 18, Daily Build and Smoke Test, Rapid Development, McConnell
• References
  » The Joel Test: 12 Steps to Better Code, Joel Spolsky
    http://www.joelonsoftware.com/printerFriendly/articles/fog0000000043.html
The Joel Test

• Do you use source control?
• Can you make a build in one step?
• Do you make daily builds?
• Do you have a bug database?
• Do you fix bugs before writing new code?
• Do you have an up-to-date schedule?
• Do you have a spec?
• Do programmers have quiet working conditions?
• Do you use the best tools money can buy?
• Do you have testers?
• Do new candidates write code during their interview?
• Do you do hallway usability testing?

Disclaimer (Spolsky)

• Of course, these are not the only factors that determine success or failure:
  » in particular, if you have a great software team working on a product that nobody wants, well, people aren't going to want it.
  » And it's possible to imagine a team of "gunslingers" that doesn't do any of this stuff that still manages to produce incredible software that changes the world.
• But, all else being equal, if you get these 12 things right, you'll have a disciplined team that can consistently deliver.

Software Configuration Management (SCM)

• SCM is the practice of managing project artifacts so the project stays in a consistent state over time
  » processes for evaluating proposed changes
  » tracking changes and enabling roll-back
  » handling multiple versions
• Most often applied to source code, but also beneficial for requirements, design, test cases, user documentation, scripts, etc, etc

Source Control

• The team product is a complete working program
  » correctly built from synchronized and correct source code and resources and tested appropriately
• Multiple people working on one collection of sources can be a nightmare unless managed well
  » Overlapping changes, old and inconsistent versions
  » Disks crash, houses burn, computers are stolen
  There are good tools to help you manage integration!
    • use CVS, not caffeine
Make a build in one step

- On good teams, there’s a single script you can run that
  - does a full checkout from scratch
  - rebuilds every line of code
  - makes the binary executable files in all versions, languages and #ifdef combinations
  - creates the installation package
  - creates the final media - CDROM, web site, …
- All steps are automatic and exercised regularly

Daily Build and Smoke Test

- Build the entire product every day and run a good test suite against the new version
  - automatic and frequent
  - canary in the mine - find out early that you’ve got problems and fix them before disaster strikes
- Benefits
  - Minimizes integration risk
  - Reduces risk of low quality
  - Supports easier defect diagnosis
  - Improves morale - developers, managers, customers

Using Daily Build and Smoke Test

- Build daily
  - Developers check in working modules
  - The build is the heartbeat or sync pulse of project
- Check for broken builds and fix problems
  - Define appropriate quality level
  - At minimum, build should be useful for testing
    - complete compile, link, package, and pass smoke test
- Smoke test daily
  - exercise entire system from end to end
  - grow the tests with the system

Use a bug data base

- You need to know
  - how to reproduce the bug
  - expected behavior, actual behavior
  - current owner of the bug
  - status (open, fixed)
- You can’t keep the bug list in your head!
- There are numerous tools available
  - Don’t use something that is so fussy that it is a big pain to enter, comment on, and close bugs
  - free trial version of FogBUGZ is available
  - an Excel spreadsheet can do the job
Fix bugs before writing new code

• Don’t build the termites into the structure
  » Bugs are always easier to find soon after creation rather than after time has gone by
• Sometimes bugs reveal fundamental problems
  » you may have a basic concurrency problem!
• You can’t accurately schedule the repair and release of a system made from defective parts held together with duct tape and prayer

Up to date schedule

• “It will be done when it’s done!”
  » When will my computer be repaired?
  » When will you finish your degree?
  » When will you have a releasable product?
• Confidence in the schedule enables all sorts of decision making and planning to go on
  » lower stress, higher morale all around
• A good schedule helps you resist feature creep
  » Don’t let the doodads build up and delay delivery

Have a Good Specification

• Know what you are building
  » Write it early
  » Keep it up to date
• The spec is the tool that can help you see where you are going to have problems
  » Are the scenarios realistic?
  » How you are going to accomplish the promises?
  » It’s a lot easier on everybody to change the promise now than to break the promise later

Have quiet working conditions

• Minimize uncontrollable distractions
  » turn off your email
• Be focussed when you are alone and working
  » get in the zone and blast away
• Be focussed when you are meeting and discussing with others
  » communication is important, so make good use of the time you are together
Use the best tools money can buy

- This doesn’t mean the most expensive tools!
- Spend the time to understand
  » which tools you need
  » which tools you already have
  » what you need to be more productive
- If you need an investment, think about how to request it then stand up and request it
  » There is a lot of money available, why should it be spent on you?

Use testers as basic part of the team

- Testing is a different mindset from developing
- It can be interesting to do and very revealing in its results
- Your customers are going to test all the nooks and crannies of your system anyway
  » testers are your friends, not your enemy!
  » find out the problems now, not after shipping

Write code during interviews

- We are not hiring, but still ...
  » You are writing code while learning the processes
  » You are using a variety of tools and processes
- Think about your projects at an abstract level
  » Could you describe the successes and problems in the project life cycle?
  » Could you lay out a project plan for a hypothetical system product that uses a reasoned selection of tools and techniques?

Hallway Usability Testing

- Does this project and its design make sense to somebody who is not married to the project?
- Let somebody new use the product
  » Do they understand what it is?
  » Do they like it?
  » Do they make assumptions that you never thought of?
  » It only takes a few people doing this to understand if you are on track.
Some support tools

- Ant - build, package, test integrator
- JUnit - testing framework
- JavaNCSS - simple code metrics
- JDepend - design quality metrics
- Checkstyle - coding standard checker
- FogBUGZ - bug tracking
- CVS - source code revision management