Architecture

CSE 403, Winter 2006
Software Engineering

http://www.cs.washington.edu/education/courses/403/06wi/

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 1

Readings and References

* References

» Software Architecture, David Garlan, CMU, 2001
e http://lwww-2.cs.cmu.edu/~able/publications/encycSE2001/

» A Practical Method for Documenting Software
Architectures, Clements, et al, CMU, 2002
e http://lwww-2.cs.cmu.edu/~able/publications/icse03-dsa/
» Enterprise JavaBeans Specification, Sun Java Community
Process
¢ http://java.sun.com/products/ejb/docs.html

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 2

Software Architecture

» The software architecture of a program or
computing system is the structure or structures
of the system, which comprise

» software components
» the externally visible properties of those components
» and the relationships among them.

From Software Architecture in Practice, Bass, Clements, Kazman, referenced in Garlan

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 3

View

» The architecture of a system describes its gross
structure using one or more views

* Structure in a view illuminates a set of top-
level design decisions
» how the system is composed of interacting parts
» where are the main pathways of interaction
» key properties of the parts

» sufficient information to allow high-level analysis
and critical appraisal

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 4

Uses of an Architectural Description

» Understanding
» Abstraction means that we can grasp the major
elements in a view and the rationale behind them
* Reuse
» Reusable chunks must be visible to be recognized,

extracted, generalized and reapplied to new areas
 Construction

» Some views provide a partial blueprint for
development - components and dependencies

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 5

More Uses of an Architectural Description

» Evolution
» Expose the “load-bearing walls” of the design and
distinguish between components and connectors
* Analysis
» Consistency, performance, conformance
» Management
» Milestone: successful analysis of valid architecture

« Communication
» Stakeholders can prioritize explicit tradeoffs

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 6

How to describe an architecture?

* “Boxes and lines”
» graphical, adaptable, intuitive
» traditional architecture description \\

* Some issues
» meaning of the graphical symbols varies
» inconsistent or incomplete information

» difficult to formally analyze for consistency,
completeness, correctness

» constraints are hard to show, enforce

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington

Architectural Description Languages

» Formal notations for representing and analyzing
architectural descriptions
 Provide a conceptual framework and concrete
syntax for characterizing software architectures
» also provide tools for parsing, displaying, compiling,
analyzing, or simulating the architectural description
* Details of the ADL vary widely depending on
the intended application domain
» Like metrics - useful but judgement required for use

8

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington

Multiple views

» A key understanding is that multiple views of
the architecture are valid

» different stakeholders need to see different things

» different aspects of the system are best viewed
from different points of view

» Code-oriented views
» modular structure of the system, layers
» Execution-oriented views
» dynamic configurations, performance, reliability

Entities in an execution-oriented view

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 9

System and Software Components

» hardware, programs, data blocks
Connectors

» mediate interactions among components
Configurations

» combinations of components and connectors
Constraints

» resource limitations, operating environment

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington

Enterprise Java Bean Examples

* This is the specification of the Enterprise JavaBeans
architecture.

» The Enterprise JavaBeans architecture is a component
architecture for the development and deployment of
component-based distributed business applications.

» Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure.

» These applications may be written once, and then
deployed on any server platform that supports the
Enterprise JavaBeans specification.

Chap 3: Roles and Scenarios

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 1

 Discusses the responsibilities of
» Enterprise Bean Provider (Aardvark, Wombat)
» Application Assembler (Wombat)
» Deployer (IT Staff)
» EJB Container and Server Providers (Acme)
» System Administrator (IT Staff)

 with respect to the Enterprise JavaBeans
architecture.

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington

Module view of deployed application

deployed
ISP pages

A Web Server K

Employee
Service
Employee
ServiceAdmin

Employee

HR module

Record

Aardvark

Payroll

deploved enterprise beans

ACME EJB Container _/

o

ACME EJB Server /

ﬁ Payroll module

ABC's ERP System

ABC's pension
plan application

(c) Wombat’s application is deployed in ACME’s EJB Container at the ABC enterprise.

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington

6.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans that pro-
vide local and/or remote client views. Note that a client may be a local client of some session beans and

a remote client of others.

Client View of session beans deployed in a Container

client

EIBObjects ’
EJBHome

EJBLocalObjects

i

container

)

session bean 1

EJBLocalHome

session bean 2

Figure 21

Inheritance
Relationships

Example of [nheritance Relationships Between EJB Classes

Jova. i Remote

B Me
EJBMetwData EIBObect

A EJBHome

Java.fo.Serfalizahle

Enterprise

EnterpriseBean 1 oopione

3

SessionBear

enterprise bean
provider

Cart {Wombat Inc.)
CartHonme
CartBean
AcmeRemote cants
. e

AcmeMetaData | AcmeHome AcmeBean P,'K:,‘,::
produced by
Aeme tols

AemeCartHome AcmeRemoteCart

AcmeCartMetaData AcmeCartBean

Jerva interfice

— = extends or implements interface
—= extends implementation, code gener

Java class

n, or delegation

State Transition
Diagram

does not exist

release reference

client’s method on reference
generates NoSuchObjectException or
NoSuchObjectLocal Exception

=

does not exist

and
not referenced

Container crash,
or bean timeout

home.create<METHOD>(...)

handle.getEJBOQbject()

cand
k referenced

object.remove(),
home.removef(...),
system exception in bean,
bean timeout,
or
Container crash

exIsts

and
not referenced

A session object does not exist until it is created. When a client creates a session object, the client has a

release reference

and
referenced

client’s method on reference

reference to the newly created session object’s component interface.

Figure 8 01D for session object at start of a ransaction.

container provided classes

Object Interaction
client EIB EJB container session synchro- | instance transaction database

Dlagl’am (Local) (Local) context Nization s
Home Object

[. . . .
|_javax.transaction.UserTransaction.begin()

I t t t
business method | |
| |

—

| |
If the instance was [)(L\',\!\‘Iht‘d it is deactivated
| |
T
|

new

registerSynchronization{ s)'nchrrniznuml)

read somekata

t
register resoyrce managel

business method

|
business method

|
|
t
|
|
|
|
|
|
|
|
|
e ——}

—_—— ———

|

|

|

|

|

|

|

|

|

|

|

|

| afterBegin
|

|

|

|

|

|

|

|

|

| business method
|

Data Flow Diagrams (DFD)

» DFDs document a process by documenting the
flow of data throughout the process.

» square external data source or sink
» arrow data flow
» circle process input data to output data
» parallel lines data store

system user Deny

manage user ID binary 1D

1D confirmation W

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington 18

Why do boxes and lines persist?

Boxes and Lines are generally understandable and adaptable

. Negotiate to
Change A’s Publish 10660 find common
form to abstraction .. fly formfor A& B

B’s form of A’s for
0 B
N

B
© - 07 '®
Attach adaptor Introduce Provide B with @
or wrapper to A intermediate import/export Make B
form convertor multilingual

9 | Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques, from Garlan, Software Architecture

27-Jan-2006 cse403-08-architecture © 2006 DWJohnson & University of Washington

