
May 2002 11

A MODNART

S
cience is supposed to learn
more from its failures than
its successes. Schools ac-
tively teach trial and error:
If at first you don’t succeed,

try, try again. On the other hand, we’re
told to look before we leap but that he
who hesitates is lost—so maybe we’re
all doomed no matter what.

This notion that trying and failing is
normal, and natural, can lead you
astray in your professional life, how-
ever. In practice, it’s a lot harder to get
a conference paper accepted that is of
the form, “We wanted to help solve
important problem X, so we tried Y,
but instead of the hoped-for result Z,
we got yucky result Q.” And when I
say “a lot harder,” I mean “there’s no
way.” This is true in science as well as
engineering, and it’s responsible for the
overall impression you get when read-
ing conference proceedings: Everything
other people try works perfectly.
You’re the only one who goes down
blind alleys and suffers repeated fail-
ures.

There’s a good reason why confer-
ences and journals are biased this way.
Sometimes there’s a very fine line
between good ideas that didn’t work
out and just plain stupid ideas. And
since there are a thousand wrong ways
to do something for every way that
works, a predisposition for papers with
positive results is a quick, generally
effective filter that saves conference
committees a lot of time. (They need
to save that time so they can use it later,
debating how to break it to a fellow
conference committee member that
they want to reject his paper. As Dave

Barry would say, I’m not making this
up.) Of course, prospective authors
know this, and they would be in dan-
ger of biasing their results toward the
most positive light if it weren’t for their
dedication to the scientific ideal. (Are
you buying any of that? Me neither.)

Scientists get to run their experi-
ments multiple times, and they can
gradually reduce or eliminate sources
of systematic errors that might other-
wise bias their results. Engineers tend
to get only one chance to do some-
thing: one bridge to build, one CPU to
design, one software development pro-
ject to crank out late, slow, and.…
Whoops. I got carried away there.

ANTICIPATION
Because engineers generally can’t test

their creations to the point of satura-
tion, they must make do with a lot of
substitutions: anticipation of all possi-
ble failure modes; a comprehensive set

of requirements; dedicated validation
and verification teams; designing with
a built-in safety margin; formal verifi-
cation where possible; and testing, test-
ing, testing. If you didn’t test it, it
doesn’t work.

In some cases, computers have
become fast enough to permit testing
every combination of bit patterns. If
you’re designing a single-precision
floating-point multiplier, you know the
unit is correct because you tested every
possible way it could be used. Now all
you have to do is worry about resets,
protocol errors into and out of the
unit, electrical issues, noise, thermals,
crosstalk, and why your boss didn’t
smile at you when she said good morn-
ing yesterday.

Testing to saturation
But many, perhaps most, things you

design can’t be tested to saturation.
Double-precision floating-point num-
bers have so many bit patterns that it’s
hard to see when, if ever, such units
could be tested to saturation. Two to
the 64th power is an extremely large
number, and there are usually two
operands involved. And that’s for a
functional unit with a fairly regular
design and state sequence. Saturation
testing of anything beyond trivial soft-
ware is often even more out of the
question.

So it behooves us to try to anticipate
how our designs will be used, certainly
under nominal conditions, but also
under non-nominal conditions, which
usually place the system under higher
stress. Programmers have a range of
techniques at their disposal, such as
defensive programming (checking
input values before blindly using
them), testing assertions (automatically
checking for conditions the program-
mer thought were impossible), and
always checking function return val-
ues. Engineers design in fail-safe or fail-
soft mechanisms because they know
that the unexpected happens all the
time. If you’ve ever driven a car that
had the check-engine-light illuminated,
you were in one of those modes.

If You Didn’t Test It,
It Doesn’t Work
Bob Colwell

Most things
you design can’t
be tested to
saturation.

12 Computer

A t R a n d o m

Real-world uses
One of the more difficult tasks in

engineering is trying to imagine all of
the conditions under which your cre-
ation will be used in the real world—
or, if you’re an aerospace engineer, in
the real universe. There are user inter-
faces to consider: Automobile manu-
facturers long ago resigned themselves
to designing to the lowest common
denominator of the human population
in terms of intelligence applied to the
operation of a motor vehicle. But idiot-
proofing is difficult precisely because
idiots are so clever.

There are also legal concerns—juries
that award damages to people who
think driving with a hot cup of coffee
between their legs is a reasonable
proposition may well fail to grasp the
engineering tradeoffs inherent in any
design. How do we protect idiots from
themselves?

DESIGNING WITH MARGIN
As a conscientious designer, you try

to anticipate all the ways your design
may be used in the future. Since you do
outstanding work, you expect that you
or someone else will reuse your code
or your silicon in the future. So you try
to guess what that future designer will
want and strive to provide it.

You’ve also been around this par-
ticular block a few times before, so
you build in some flexibility because
you know that project management
will change its mind about certain
major project goals as you go along.
And since debugging was such a bear
last time, you allow for lots of debug
hooks and performance counters. If
you keep traveling down this road,
you’re going to make yourself crazy.
Yes, more than you are now. You need
to compromise.

The art of compromise
Engineering is the art of compro-

mise: now versus later, concise versus
generalized, schedule versus thor-
oughness. And all around you, the
other designers are falling behind and
asking for help—your help.

This is one area of engineering in
which you can’t simply overwhelm the
problem with force. You want an ele-
gant, intelligent, balanced creation that
meets all of the specs and also the intent
of the product, stated or otherwise—
not a sandbagged, bloated, turkey of a
design. Yes, it will take compromises,
but the magic is in getting those com-
promises right. Engineers know elegant
designs when they see them. Aspire to
produce them.

Tragedy of the commons
Always keep in mind the “tragedy of

the commons.” The idea is that there
are shared resources, initially allocated
in the hope of having enough for all,
but overall management of those
resources is essentially a distributed
local function.

If you’re a silicon chip designer, your
job is to implement your piece of the
design in the area you were allocated,
and to do so within the power, sched-
ule, and timing constraints. You know
that those constraints are somewhat
fungible: If you had more schedule
time, you could compact your real-
estate footprint. With more thermal
power headroom, you could meet your
clocking constraint.

The tragedy of the commons occurs
when, faced with the same problems
you face, your fellow designers decide
to borrow more of the chip area than
they were allocated. It appears to each
of them that they’re using only a tiny
fraction of the unallocated chip space,
while substantially boosting the die
area available to their particular func-
tion. And so they are. But if everyone
does that, the chip’s overall die size
will exceed the target, with no margin

left to do anything about it. Think
locally and globally.

VALIDATION AND VERIFICATION
Did I mention this: If you didn’t test

it, it doesn’t work. In DragonFly:
NASA and the Crisis Aboard MIR
(HarperCollins, New York, 1998),
Bryan Burrough gives a riveting
account of several near catastrophes
on the Russian space station.

In one instance, an oxygen genera-
tor catches fire, and a blowtorch-like
flame begins to bloom. Jerry Linenger,
the sole American astronaut, grabs an
oxygen mask, but it doesn’t work. He
grabs another one that does work. The
station commander leads Linenger to
the station module where the fire extin-
guishers are kept. Linenger grabs one
“but is startled to find it is secured to
the wall.” Both men pull at it, but the
wall wins. They try another extin-
guisher, with the same outcome.

Later analysis revealed that the
transportation straps for the fire extin-
guishers were still installed—in the
intervening 19 months of service, no
one had thought to wield the wrench
required to remove them. In perfect
hindsight, this also suggests that what-
ever fire drills had been performed in
those months weren’t realistic enough
or the astronauts would have found
the problem earlier.

An important distinction
NASA draws a useful distinction

between validation and verification.
Verification is the act of testing a design
against its specifications. Validation
tests the system against its operational
goals.

An example of why the distinction
is important comes from Endeavour’s
maiden flight, when it tried to ren-
dezvous with the Intelsat satellite. As
it turned out, the “state-space” part of
the shuttle’s programming had been
done with double-precision floating-
point arithmetic, and the “boundary
checking” part was done with single-
precision arithmetic. The shuttle’s
attempted rendezvous didn’t converge

The tragedy of the
commons occurs when

designers decide to
borrow more of the
chip area than they

were allocated.

May 2002 13

levels of intelligent thought, and he uses
numerical sequences as the clearest
analogy-generators. You remember
these—What comes next in this se-
quence: 5, 10, 15? Yep, 20 would be
my bet too.

So what comes next in the following
sequence: 0, 1, 2? It has to be 3,
doesn’t it? But wait, why would I give
you a trivial sequence and claim it’s
going to stimulate your brain? What
else could it be, if not 3?

Even when I give you the answer,
you probably still won’t know where
this is coming from. The answer is 0,
1, 2, 720!. That’s 720 factorial: 0, 1, 2,
720! = 0, 1, 2, 6!! = 0, 1!, 2!!, 3!!!.

The important thing about this
example is not the actual math
involved per se. It’s that when you first
saw the sequence 0, 1, 2, your imme-
diate instinct probably was to answer
“3” and move on. But some other part
of your brain, your Validation Reflex,
became instantly suspicious and said,
“Not so fast. Something’s not quite
right here.”

That’s the voice you must learn to
hear to do truly outstanding valida-
tion. That’s the instinct that allows you
to take a step back from the implicit
assumptions that others around you
are making so you can go in a differ-
ent direction where you may see some-
thing everyone else is missing.

Y eah, I know—I cheated a little
with that math sequence. It
doesn’t seem quite fair to throw

in factorials when the original
sequence didn’t have them. You could
complain to Hofstadter. But you
should read his book first.

In the meantime, what’s next in this
sequence: If you didn’t test it, …? �

Bob Colwell was Intel’s chief IA32
architect through the Pentium II, III,
and 4 microprocessors. He is now an
independent consultant. Contact him
at bob.colwell@attbi.com.

would happen if he tried to catch a
field goal. For readers who don’t fol-
low American football, a field goal is
an attempt by the offensive team to
kick the ball between the goal posts at
the end of the field. During a field goal
attempt, the offense just tries to keep
the defense from blocking the kick.
There would be no point in sending
any offensive players downfield, so
nobody ever does.

The validator was unswayed by the
spec that there’s no point in trying to
catch the ball after it has been kicked;
in true validation hero fashion, he sim-
ply noticed that it didn’t seem to be
impossible. After trying for a couple of
hours, he succeeded in doing it. Since
the game’s designers had never con-
ceived of anyone trying to do such a
goofy thing, the game’s specs didn’t
include a requirement for how to han-
dle it. As the validator suspected, the
game didn’t handle the situation very
well—it locked up.

Stepping outside the box
Having a validation mindset that

allows an independent thinker to step
outside a design project’s orthodoxy is
absolutely vital. Such people often are
the last line of defense between some-
thing that’s overlooked in design and
a user who isn’t happy with the prod-
uct—or worse.

Although it’s not a common experi-
ence in most people’s daily lives, you
know what this mindset feels like. An
example borrowed from Douglas
Hofstadter’s Fluid Concepts and Crea-
tive Analogies (Basic Books, New York,
1995) simulates it. Hofstadter believes
that analogies are among the highest

to a solution due to this mismatch;
only a live patch from the ground
saved the mission.

If the specs called for double preci-
sion, verification of the state-space
code would never find this potential
problem: different specs for different
code. Validation, on the other hand,
could reasonably have been expected
to detect this mismatch before the
astronauts encountered it hundreds of
miles above the earth.

I’m very fond of validation. Verifi-
cation is absolutely necessary, and it’s
as important (and difficult) a task as
design or architecture. In my experi-
ence, however, the job of making sure
a design correctly implements its specs
isn’t likely to be forgotten or over-
looked. Verification may not always be
done very well, but it probably won’t
be skipped entirely. Validation, on the
other hand, is often misunderstood,
and management sometimes doesn’t
remember why it’s so necessary.

Seeing the big picture
In my experience, after months or

years of intensive design and develop-
ment, the designers are tired, they’re
being pressured to hit their production
schedule, and they just want to finish
the project. Some part of them really
doesn’t want to hear that there might
be anything wrong with their baby.
The architects often have moved into
the initial phase of another design, and
they may not even be available, much
less actively engaged in final testing. So
the validation folks are the only ones
left who can try to see the Big Picture.

Especially on long design projects,
fundamental changes may have
occurred in the overall product land-
scape that haven’t been fully incorpo-
rated into the specs: Competition has
arisen, a lawsuit may have been
resolved in an unfavorable direction,
last-minute design changes were made
that won’t have benefited from the years
of testing the design otherwise enjoyed.

Here’s an example of what I mean.
While testing the Madden NFL 99 PC
game, a validator wondered what

Having a validation
mindset that allows an
independent thinker to
step outside a design
project’s orthodoxy is

absolutely vital.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

