
1

Anchoring the Software Process

Barry Boehm, USC

November 1995

(An abridged version appears in IEEE Software, July 1996)

Abstract

The current proliferation of software process models provides flexibility for

organizations to deal with the unavoidably wide variety of software project

situations, cultures, and environments. But it weakens their defenses against some

common sources of project failure, and leaves them with no common anchor points

around which to plan and control. This article identifies three milestones -- Life

Cycle Objectives, Life Cycle Architecture, and Initial Operational Capability --

which can serve as these common anchor points. It also discusses why these

particular three milestones or their equivalents are success-critical, particularly for

large software projects, but for other software projects as well.

1. Introduction

For a few golden moments in the mid-1970’s, it appeared that the software

field had found a sequence of common anchor points: a set of milestones around

which people could plan, organize, monitor, and control their projects. These were

the milestones in the waterfall model, typically including the completion of system

requirements, software requirements, preliminary design, detailed design, code,

unit test, software acceptance test, and system acceptance test [Royce, 1970].

These milestones enabled companies, government organizations, and

standards groups to establish a set of interlocking regulations, specifications, and

standards. These covered a full set of software project needs, such as for cost and

schedule estimation, project plans, reviews and audits, configuration management,

and quality assurance. Extensive completion criteria were established for each

milestone, such as completeness, consistency, traceability, testability, and

feasibility.

2

What Happened to the Waterfall Model?

Unfortunately, just as the waterfall model was becoming fully elaborated,

people were finding that its milestones did not fit an increasing number of project

situations. Some particularly dysfunctional mismatches involved projects

developing user-interactive systems, projects involving extensive software reuse, or

projects involving high-risk elements. For example, the ideal of a complete,

consistent software requirements specification ran into the following problems:

• A prototype is worth 100,000 words. Written requirements specifications

trying to describe the look and feel of a user interface were nowhere near

as effective as a user interface prototype.

• Gold plating. Fixed requirements specifications in advance of design

tended to encourage software gold-plating. Users asked about their

requirements would frequently reason, “ I don’t know if I’ll need this

feature or not, but I might as well specify it just in case.”

• Inflexible point-solutions. Fixed requirements specifications tended to

produce point solutions optimized around the original problem statement.

These solutions were frequently difficult to modify or to scale up to

increased workload levels.

The ideal of a full-project Critical Design Review (CDR) of a complete,

consistent detailed design also ran into problems. For large projects with 5,000

pages of detailed design specifications, the reviews were inevitably incomplete.

They tended to impede progress, as developers were supposed to wait for several

weeks for the review to complete before proceeding to code.

CDRs were effective for hardware developments, where the CDR was the

final checkpoint for finding and fixing design defects before staffing up for

production. For software, the project was staffed up well before CDR, making

significant problems detected at CDR expensive to fix.

The ideal of a software acceptance test keyed to demonstrating compliance to

a set of documented requirements specifications encountered problems as well.

Foremost among these was that static tests of input-output transformations

3

provided little insight on whether the software would acceptably support common

user task sequences or mission scenarios. The acceptance test also failed to cover

many off-nominal problem situations subsequently encountered in beta-testing,

field-testing, hardware-software integration, or in actual mission operations.

Evolutionary Development Milestones and Problems

The primary initial response to the waterfall model’s problems was

evolutionary development[McCracken-Jackson, 1982]. The only primary class of

milestone in evolutionary development is the release of an increment of system

capability. Its new content is determined from experience with the earlier releases

of the system. Thus, the critical milestone in evolutionary development is the initial

release: a package of software with sufficient capability to serve as a basis for user

exercise, evaluation, and evolutionary improvement. However, this “initial release”

milestone frequently has the following problems:

• Inflexible point-solutions. Frequently, the initial release is optimized for

initial demonstration-mode and exploratory-mode success. For example,

it may store everything in main memory in order to provide rapid

response time. Then, when users want to transition to large-scale use,

the initial point-solution architecture will not scale up.

• High-risk downstream capabilities. Frequently also, the initial release

will defer such considerations as security, fault-tolerance, and distributed

processing in the interest of providing early functionality and user

interface capabilities. The users may like the results, and expect the

deferred considerations to be delivered equally rapidly. Usually, this

puts the project in big trouble because the initial release’s architecture

cannot be easily extended to support the desired security, fault tolerance,

distributed processing, or other key considerations.

• Off-target initial release. Evolutionary developers often begin by saying,

“Let’s find out what the user needs by building an initial release and

seeing what the users want improved.” The lack of initial user activity

analysisfrequently leads to an initial release which is so far from user

needs that the users never bother learning and using it.

4

Process Proliferation

These difficulties with the waterfall and evolutionary development models

have led to the development and use of a number of alternative process models:

risk-driven (spiral), reuse-driven, legacy-driven, demonstration-driven, design to

cost or schedule, incremental, and hybrid combinations of these with the waterfall

or evolutionary development models.

This proliferation of software processes has made it very difficult for

software organizations to establish a common frame of reference and commonly-

defined milestones to serve as a basis for software life-cycle planning, measuring,

controlling, and communicating with external organizations. In many cases,

organizations have remained with admittedly flawed models such as the waterfall,

because they have believed that the value of any common framework was worth the

price of its imperfections.

Anchoring the Software Process

The remainder of this article will summarize the nature of three common

milestones for anchoring the software process:

• Life Cycle Objectives (LCO)

• Life Cycle Architecture (LCA)

• Initial Operational Capability (IOC)

For each milestone, it provides a rationale for why the milestone is critical and

common to virtually all software developments. It relates the milestones to recent

process initiatives such as MIL-STD-498, EIA/IEEE J-STD-016, ISO standard

12207, the Win Win extension to the Spiral Model, and software product line

management initiatives. It provides an example of the milestones’ use: the ARPA-

Services-Industry STARS program. It ends with a set of conclusions on the

milestones and their ability to anchor the software process.

5

2. Milestones for the Future

Since the publication of the article on the Spiral Model [Boehm, 1988], the

author has been able to review the results of a number of effective or flawed

implementations of the model. A not-too-extreme example: “We decided that using

the spiral model meant that we didn’t have to write anything down, so now

everybody’s off doing different things, and we don’t know how to pull them all

together.”

One of the most consistent correlates of success vs. failure on these projects

was the degree to which they employed the equivalents of the three critical

milestones below, particularly the first two front-end milestones. The key elements

of these two milestones: stakeholder concurrence on the system’s Life Cycle

Objectives, and determination and validation of the system’s Life Cycle

Architecture, are summarized together in Table 1. Each is discussed further along

with its rationale below.

A. Life Cycle Objectives (LCO)

The “Top-level system objectives and scope” part of the LCO milestone

involves establishing the system boundary: the set of key decisions on what will

and will not be included in the system to be developed. The part that will not be

included will therefore be in the system’s environment: key parameters and

assumptions on the nature of users, data volume and consistency, workload levels,

interoperating external systems, etc. These should be characterized not just at

their initial operating levels, but in terms of their likely evolution, in order to avoid

the point-solution difficulties discussed in the Introduction.

The “Operational Concept” involves working out scenarios [Carroll, 1995] of

how the system will be used in operation. These scenarios may involve prototypes,

screen layouts, dataflow diagrams, state transition diagrams, or other relevant

representations. If the ability to perform in off-nominal situations (component

failures, crisis situations) is important, scenarios for these should be developed as

well. Scenarios for software and system maintenance need to be worked out,

including determination of which organizations will be responsible for funding and

performing the various functions. These organizations are some of the key

6

stakeholders whose concurrence is needed for realistic and supportable system

definitions.

Table 1. Elements of Critical Front End Milestones

MilestoneE
lement

Life Cycle Objectives
(LCO)

Life Cycle Architecture
(LCA)

Definition
of
Operationa
l Concept

• Top-level system objectives
and

 scope
 -System boundary
 -Environment parameters
and

 assumptions
 -Evolution parameters

• Operational concept
 -Operations and
maintenance

 scenarios and parameters
 -Organizational life-cycle
 responsibilities
(stakeholders)

• Elaboration of system objectives
and
 scope by increment
• Elaboration of operational
concept by increment

Definition
of System
Requireme
nts

• Top-level functions,
interfaces,

 quality attribute levels,
including:
 -Growth vectors
 -Priorities

• Stakeholders’ concurrence on
 essentials

• Elaboration of functions,
interfaces,
 quality attributes by increment
 -Identification of TBDs (to-be-
 determined items)
• Stakeholders’ concurrence on
their
 priority concerns

Definition
of System
and
Software
Architectu
re

• Top-level definition of at
least

 one feasible architecture
 -Physical and logical
elements

 and relationships
 -Choices of COTS and
reusable

 software elements
• Identification of infeasible
 architecture options

• Choice of architecture and
 elaboration by increment
 -Physical and logical components,
 connectors, configurations,
 constraints
 -COTS, reuse choices
 -Domain-architecture and
 architectural style choices
• Architecture evolution
parameters

Definition
of Life-
Cycle Plan

• Identification of life-cycle
 stakeholders
 -Users, customers,
developers,

• Elaboration of WWWWWHH* for
 Initial Operational Capability
(IOC)
 -Partial elaboration,

7

 maintainers, interoperators,
 general public, others

• Identification of life-cycle
 process model
 -Top-level stages,
increments

• Top-level WWWWWHH* by
 stage

identification of
 key TBDs for later increments

Feasibility
Rationale

• Assurance of consistency
among

 elements above
 -Via analysis, measurement,
 prototyping, simulation, etc.
 -Business case analysis for
 requirements, feasible
 architectures

• Assurance of consistency among
 elements above

• All major risks resolved or
covered
 by risk management plan

* WWWWWHH: Why, What, When, Who, Where, How, How Much

The “System Requirements” in the next part of the LCO definition in Table 1

are not absolute cast-in-concrete specifications as in the waterfall or related

contract-oriented models. Instead, they record the collective stakeholders’

concurrence on essential features of the system, whose detail can be modified easily

and collaboratively as new opportunities (reuse opportunities, strategic partners),

problems (budget cuts, technical difficulties), or developments (reorganizations,

divestitures) arise.

The definition of “System and Software Architecture” should be at a

sufficient level of detail to support analysis of the architecture’s feasibility in

supporting the system’s objectives and requirements. Having more than one

feasible choice of architecture is acceptable at the LCO stage; an example would be

the existence of two feasible central commercial-off-the-shelf (COTS) products with

different architectural implications. However, if no architectural option can be

shown to be feasible, the project should be canceled; or its requirements, scope and

objectives reworked. A record of infeasible options which were considered and

dropped should be kept as insurance that these options will not be adopted in

ignorance later.

A critical component of the initial “Life-Cycle Plan” is the identification of the

major stakeholders in the system to be developed and evolved. These frequently

8

involve system user, customer, developer, and maintainer organizations. If the

system is closely coupled with another system, the interoperator organization is a

key stakeholder. If system safety, privacy, or other general-public issues are

important, a representative of the general public should be a stakeholder. These

are stakeholders whose concurrence on the system requirements is needed;

otherwise, the system may not reflect their needs and will not be a success.

Another critical component of the life cycle plan is the identification of the process

model(s) to be used (waterfall, evolutionary, spiral, incremental, design-to-

cost/schedule, or hybrid combination of these and others).

For the main part of the Life-Cycle Plan, an organizing principle is needed

which scales down to provide simple plans for simple projects. A good approach is

the WWWWWHH principle, which organizes the plan into Objectives (Why is the

system being developed?); Milestones and Schedules (What will be done by When ?)

Responsibilities (Who is responsible for a function? Where are they organizationally

located?); Approach (How will the job be done, technically and managerially?) ; and

Resources (How much of each resource is necessary ?). Using this approach, the

essential decision content of a life cycle plan for a small, straightforward project can

be packed into one page or two briefing charts.

The most important thing to achieve for the Life Cycle Objectives milestone is

the conceptual integrity and compatibility of its components above. The element

which assures this is the “Feasibility rationale.” It uses an appropriate combination

of analysis, measurement, prototyping, simulation, benchmarking, or other

techniques, to establish that a system built to the life cycle architecture and plans

would support the system’s operational concept. A further key element of the

rationale is the business case analysis, which establishes that the system would

generate enough business value to be worth the investment. A counterpart in the

defense sector is the Cost and Operational Effectiveness Analysis (COEA).

B. Life Cycle Architecture (LCA)

As indicated in Table 1, most of the elements of the LCA milestone are

elaborations of the elements of the LCO milestone. The critical element of the LCA

milestone is the definition of the system and software architecture itself. This

9

consists of definitions of the system and software components (either a hardware

component, a computer program, a data ensemble, or a combination of such items),

connectors (elements which mediate interactions among components),

configurations (combinations of components and connectors), and constraints (e.g.,

resource limitations and shared assumptions about the operating environment).

[Shaw-Garlan, 1996] provides an excellent treatment of software architectures.

Other key features of the LCA milestone are the specifics of COTS and

reused software choices, which frequently drive both the architecture and the

requirements; the specifics of quality attribute levels such as response time,

reliability, and security, which are also significant architecture drivers; and the

identification of likely directions of architectural evolution, to reduce the chances of

the architecture itself becoming obsolete.

As with the LCO milestone, the most important things to achieve with the

LCA milestone are:

• The feasibility rationale, which establishes the consistency and

conceptual integrity of the other elements.

• The stakeholders’ concurrence that the LCA elements are compatible

with their objectives for the system.

A feature distinguishing the LCA milestone from the LCO milestone is the

need to have all of the system’s major risks resolved, or at least covered by an

element of the system’s risk management plan. For large systems, passing the LCA

milestone is the point at which the project will significantly escalate its staff level

and resource commitments. Proceeding into this stage with major risks

unaddressed has led to disasters for many large projects. Some good guidelines for

software risk assessment can be found in [Boehm, 1989; Charette, 1989; and Carr et

al., 1993].

10

Distinguishing Features of the LCO and LCA Milestones

Here are the major features of the LCO and LCA milestones which

distinguish them from most current software milestones, which provide a rationale

for their success-critically on projects, and which enable them to function

successfully as anchor points across many types of software development.

• Their focus is not on requirements snapshots or architecture point

solutions, but on requirements and architectural specifications which

anticipate and accommodate system evolution. This is the reason for

calling them the “Life Cycle” Objectives and Architecture milestones.

• Elements can be either specifications or executing programs with data

(e.g., prototypes, COTS products).

• Specifications are driven by risk considerations rather than completeness

considerations. Critical interface specifications should be complete

because it is risky otherwise. Written specifications of user interfaces

should generally not try for completeness because their definition via

prototypes is less risky.

• The LCO and LCA milestones are not peculiar to a single process model.

One can go successfully from an LCO to an LCA via a waterfall, spiral,

evolutionary, or COTS-driven process.

• The Feasibility Rationale is an essential element rather than an optional

add-on.

• Stakeholder concurrence on the milestone elements is essential. This

establishes mutual stakeholder buy-in to the plans and specifications,

and enables a collaborative team approach to unanticipated setbacks

rather than an adversarial approach as in most contract models.

C. Initial Operational Capability (IOC)

Another distinguishing feature of the LCO and LCA milestones is that they

are the milestones with the most serious consequences if one gets any parts of them

wrong. At the other end of the development cycle, the milestone with the most

serious consequences of getting things wrong is the Initial Operational Capability

11

(IOC). Greeting users with a new system having ill-matched software, poor site

preparation, or poor user preparation has been a frequent source of user alienation

and killed projects.

The key elements of the IOC milestone are:

• Software preparation, including both operational and support software

with appropriate commentary and documentation; data preparation or

conversion; the necessary licenses and rights for COTS and reused

software, and appropriate operational readiness testing.

• Site preparation, including facilities, equipment, supplies, and COTS

vendor support arrangements.

• User, operator and maintainer preparation, including selection,

teambuilding, training and other qualification for familiarization usage,

operations, or maintenance.

The nature of the IOC milestone is also risk-driven with respect to the

system objectives determined in the LCO and LCA milestones. Thus, for example,

these objectives drive the tradeoff between IOC date and quality of the product (e.g.

between the safety-critical Space Shuttle Software and a market window- critical

commercial software product.) The difference between these two cases is narrowing

as commercial vendors and users increasingly appreciate the market risks involved

in buggy products [Cusumano-Selby, 1995].

As with the LCO and LCA milestones, the IOC milestone is compatible with

multiple classes of preceding and following processes. It can be preceded by

combinations of hardware-software integration, alpha testing, beta testing,

operational test and evaluation, or shadow-mode operation. It can be followed by

any mix of incremental or evolutionary developments, pre-planned product

improvements, annual or other planning and development cycles. And the process

of getting from LCA to IOC can be any appropriate mix of waterfall, evolutionary,

incremental, spiral, design to cost/schedule, or other models. Again, this enables

organizations to use the LCO, LCA, and IOC milestones as anchor points without

overconstraining their intermediate processes. Tailored versions of the three

12

milestones can also be used to anchor major system upgrades or reengineering

efforts.

Another benefit of these common milestones is the ability to define endpoints

for cost and schedule estimates. Such estimates become rather meaningless if you

can’t reference them to well-defined endpoints. Much of the definition of the LCO,

LCA, and IOC milestones has been done via the USC-UCI Affiliates’ program for

the definition and development of the COCOMO 2.0 cost model [Boehm et al., 1995].

3. Relation to Recent Initiatives

Recent software process initiatives have provided guidelines which make it

easier to depart from lock-step software processes such as the waterfall model,

These initiatives are also compatible with the three common anchor points above.

This section discusses recent software process standards such as MIL-STD-498

[DoD, 1994], currently evolving into EIA/IEEE J-STD-016 [EIA/IEEE, 1995]; and

ISO/IEC Standard 12207 [ISO, 1995]. It also describes recent elaborations of the

spiral model, such as the Win Win Spiral Model [Boehm-Bose, 1994] and their

relation to the three anchor points. It concludes with a discussion of the

applicability of the anchor points not just to individual projects, but to the

management of software product lines with domain architectures and reusable

components.

3.1 MIL-STD-498: Software Development and Documentation

This standard supersedes the U.S. Department of Defense’s DoD-STD-2167A

and DoD-STD-7935A, which largely focused DoD projects on waterfall-model

software processes. MIL-STD-498 goes away from this approach by focusing on

required software activities rather than phases. It states that the activities “may

overlap, may be applied iteratively, may be applied differently to different parts of

the software, and need not be performed in the order listed below” (Section 4.1). It

provides examples of its application to waterfall, incremental, and evolutionary

processes (Appendix G), and a guidebook providing more detailed usage examples

and tailoring guidelines.

Its guidance on System Requirements Analysis (Section 5.3) and System

Architectural Design (Section 5.4.2) are quite consistent with the LCO milestone

13

above. For example, system requirements analysis involves user input analysis,

operational concept definition, and iterative application of requirements analysis

and design. Its guidance on Software Requirements Analysis (Section 5.5) and

Software Design (Section 5.6) are compatible with the LCA milestone above, but the

standard misses several opportunities to emphasize the coupling of software

architecture to anticipated directions of requirements evolution and the

establishment of the Feasibility Rationale as a first-class citizen. (It requires the

recording of global design decisions, but relegates their rationale to a portion of the

Notes sections in the system and software design Data Item Descriptions).

MIL-STD-498 also advances from previous DoD standards to cover activities

involved in proceeding from software configuration item acceptance tests to the

equivalent of the IOC milestone (Sections 5.10 through 5.17). Its guidelines for

application to incremental and evolutionary development in Appendix G also show

how these apply to the IOC milestone. EIA/IEEE J-STD-016 extends MIL-STD-

498 to cover commercial as well as DoD software processes. Terms such as “CSCI,”

“HWCI,”, and “DID” are now “software items,” “hardware items,” and “software

product descriptions.” Clauses related to contracting and deliverable-vs.-non-

deliverable software are eliminated, and some requirements on reuse, tailoring,

traceability, and programming language are reworked.

3.2 ISO/IEC 12207: Information Technology Life Cycle Processes

The ISO/IEC 12207 standard [ISO, 1995] is similar to MIL-STD-498 in that

it focuses on activities and core processes (acquisition, supply, development,

operation, maintenance, supporting life cycle processes, organizational life cycle

processes) which can be performed sequentially, repeated, and combined according

to the project’s choice of life cycle model(s). Example models cited in this regard are

waterfall, evolutionary builds, pre-planned product improvement, and spiral (Annex

B.4).

ISO/IEC 12207’s “System requirements analysis” (Section 5.3.2) and “System

architectural design” (Section 5.3.3) provisions are consistent with the LCO

milestone. It goes beyond MIL-STD-498 in emphasizing the need to co-define the

system requirements and architecture, and to document the results of feasibility

evaluations. Significantly, it includes “feasibility of system architectural design” as

14

a requirements evaluation criterion, and “traceability to...” and “consistency with

the system requirements” as architectural design evaluation criteria. The

treatment of the counterpart “Software requirements analysis” and “Software

architectural design” activities is similar (Sections 5.3.4 and 5.3.5) and consistent

with the LCA milestone.

ISO/IEC 12207 is also consistent with the IOC milestone in its

accommodation of builds or increments, and in that its culminating development

process activities are “Software installation” and “Software acceptance support”

(Sections 5.3.12 and 5.3.13). Overall, ISO/IEC 12207 goes farther than MIL-STD-

498 in countering the problem areas cited in Section 1 of this paper. However, it

also misses some opportunities to make the architectural rationale an integral part

of the architecture; to include risk resolution as an architecture evaluation criterion,

and to emphasize the most likely directions of requirements change as an integral

part of the requirements.

3.3 The Win Win Spiral Model

The Spiral Model of software development [Boehm, 1988] begins each cycle of the

spiral by performing the next level of elaboration of the prospective system's

objectives, constraints, and alternatives. A primary difficulty in applying the spiral

model has been the lack of explicit process guidance in determining these objectives,

constraints, and alternatives. The recently - developed Win-Win Spiral Model

[Boehm - Bose, 1994] uses the Theory W (win-win) approach [Boehm-Ross, 1989] to

converge on a system's next-level objectives, constraints, and alternatives. This

Theory W approach involves identifying the system's stakeholders and their win

conditions, and using negotiation processes to determine a mutually satisfactory set

of objectives, constraints, and alternatives for the stakeholders.

Figure 1 illustrates the Win-Win Spiral Model. The original Spiral Model had

four sectors, beginning with “Establish next-level objectives, constraints,

alternatives.” The two additional sectors in each spiral cycle, “Identify Next-Level

Stakeholders” and “Identify Stakeholders' Win Conditions,” and the “Reconcile Win

Conditions” portion of the third sector, provide the collaborative foundation for the

model. They also fill a missing portion of the original Spiral Model: the means to

answer, “Where do the next-level objectives and constraints come from, and how do

15

you know they’re the right ones?” The refined Spiral Model also explicitly addresses

the need for concurrent analysis, risk resolution, definition, and elaboration of both

the software product and the software process. In particular, the nine-step Theory

W process translates into the following Spiral Model extensions:

FIGURE 1. The Win-Win Spiral Model

1. Identify next-level
Stakeholders

2. Identify Stakeholders’
win conditions

5. De¼ne next level of product and
process - including partitions

6. Validate product and
process de¼nitions

7.Review, commitment

3.Reconcile win conditions.
Establish next level
objectives, constraints,
alternatives.

4. Evaluate product and
process alternatives.
Resolve Risks

• Determine Objectives. Identify the system life-cycle stakeholders and their win

conditions. Establish initial system boundaries and external interfaces.

• Determine Constraints. Determine the conditions under which the system would

produce win-lose or lose-lose outcomes for some stakeholders.

• Identify and Evaluate Alternatives. Solicit suggestions from stakeholders.

Evaluate them with respect to stakeholders
�

 win conditions. Synthesize and

negotiate candidate win-win alternatives. Analyze, assess, and resolve win-lose or

lose-lose risks.

16

• Record Commitments, and areas to be left flexible, in the project’s design record

and life cycle plans.

• Cycle Through the Spiral. Elaborate win conditions, screen alternatives, resolve

risks, accumulate appropriate commitments, and develop and execute

downstream plans.

Relation of Stakeholder Concerns to Milestone Criteria

The stakeholder win-win approach enables us to define a much more

thorough set of evaluation criteria for the LCO, LCA, and IOC milestones. For

example, Table 2 identifies a set of evaluation criteria for the Life Cycle

Architecture milestone in terms of the customer, user, architect, system engineer,

developer, and maintainer stakeholders [Gacek et al, 1995].

Stakeholder Concerns / Evaluation Criteria

Customer • Schedule and budget estimation
• Feasibility and risk assessment
• Requirements traceability
• Progress tracking
• Product line compatibility

User • Consistency with requirements and
usage scenarios

• Future requirement growth
accommodation

• Performance, reliability,
interoperability, other quality
attributes

Architect and
System Engineer

• Product line compatibility
• Requirements traceability
• Support of tradeoff analyses
• Completeness, consistency of

17

architecture

Developer • Sufficient detail for design and
development

• Framework for selecting / assembling
components

• Resolution of development risks
• Product line compatibility

Interoperator • Definition of interfaces with
interoperator’s system

Maintainer • Guidance on software modification
• Guidance on architecture evolution
• Definition of interoperability with

existing systems

Table 2: Stakeholder Concerns as Architecture Evaluation Criteria

For example, the customer is likely to be concerned with getting first-order

estimates of the cost, reliability, and maintainability of the software based on its

high-level structure. This implies that the architecture should be strongly coupled

with the requirements, indicating if it can meet them. The customer will also have

longer-range concerns that the architecture be compatible with corporate software

product line investments. Users need software architectures in order to be able to

clarify and negotiate their requirements for the software being developed, especially

with respect to future extensions to the product. The user will be interested at the

architecting stage in the impact of the software structure on performance, usability,

and compliance with other system attribute requirements. As with architectures of

buildings, users also need to relate the architecture to their usage scenarios.

Architects and Systems Engineers are concerned with translating

requirements into high-level design. Therefore, their major concern is for

consistency between the requirements and the architecture during the process of

clarifying and negotiating the requirements of the system. Developers are concerned

with getting an architectural specification that is sufficient in detail to satisfy the

18

customer’s requirements but not so constraining as to preclude equivalent but

different approaches or technologies in the implementation. Developers then use the

architecture as a reference for developing and assembling system components, and

also use it to provide a compatibility check for reusing pre-existing components.

Interoperators use the software architecture as a basis for understanding (and

negotiating about) the product in order to keep it interoperable with existing

systems. The maintainer will be concerned with how easy it will be to diagnose,

extend or modify the software, given its high-level structure.

Relation of Spiral Cycles to LCO and LCA Milestones

Table 3 shows a representative set of spiral cycles with their relationship to

the LCO and LCA milestones. In Table 3, three spiral cycles are shown, with LCO

occurring after cycle 1 and LCA occurring after cycle 3. However, other cycle

configurations are acceptable as well. For example, for a large system, one could

have an earlier exploratory cycle before cycle 1, and could expand cycle 2 into two or

more cycles (not necessarily sequential).

By the LCA milestone, the spiral cycles have converged on a compatible set

of objectives, constraints, and alternatives for the system’s life-cycle concept of

operation, requirements, architecture, and plans. During this spiral process, these

artifacts are selected and grown in detail as risks are identified and resolved, and

interactions among the artifacts are explored. Once such a Life Cycle Architecture

and its associated artifacts are in place, the project can use a waterfall, spiral,

evolutionary, or other selected process to pursue the system’s post-architecture

development and evolution.

19

LCO LCA
Cycle 1 Cycle 2 Cycle 3
Determination of top-
level concept of
operations

Determination of
detailed concept of
operations

Elaboration of detailed
concept of operations by
increment, especially
IOC

System scope/
boundaries/ interfaces;
top-level requirements

Top-level HW, SW,
human requirements

Determination of
requirements, growth
vector by increment,
especially IOC

Small number of feasible
candidate architectures
(including major COTS,
reuse choices)

Provisional choice of top-
level information
architecture

Choice of life-cycle
architecture
Some components of
above TBD (low-risk
and/or deferrable)

Top-level life cycle
responsibilities
(stakeholders), process
model, cost / schedule
parameters

Make detailed process
strategy, responsibilities,
cost / schedule allocation

Thorough WWWWWHH
plans for IOC; essentials
for later increments

Stakeholder concurrence
on top-level analysis
supporting win-win
satisfaction

More detailed analysis
supporting win-win
satisfaction

Stakeholder concurrence
on thorough analysis
supporting win-win
satisfaction

Top level rationale,
including rejected
candidate architectures

More detailed rationale
underlying system
choices

Elaboration of rationale,
including risk resolution
results

Table 3: Relation of Win-Win Spiral Model to LCO and LCA Milestones

3.4 Software Product Line Management

If an organization applies the LCO, LCA, and IOC milestones separately to

each individual software project, it will get a sub-optimal outcome. It will get a

series of separate “stovepipe” systems with many redundantly-developed and

incompatible components. In order to achieve the cost, schedule, and quality

benefits of software reuse, it is important to develop a software product line

management approach.

This involves extending particularly the LCO and LCA milestone definitions.

For the LCO milestone, it is important to determine the breadth of the product line

20

domain across which reusable components will be shared (e.g., transaction

processing, message processing, military message processing, military medical

message processing). For the LCA milestone, it involves developing a domain

architecture for the product line, rather than just a life cycle architecture for an

individual system.

A recent major initiative, the STARS program, has developed a set of

software environment life cycle process, and software asset library capabilities

supporting software reuse and product line management. As STARS itself has been

a large, complex software system which successfully used the win-win spiral model

and the life cycle milestones described above, we will discuss it in the next section

as an application example.

4.0 Application Example: The STARS Program

The U.S. DoD (Department of Defense) STARS (Software Technology for

Adaptable, Reliable Systems) Program began in 1982 as an integrated program to

address the overall ensemble of DoD software problems. By 1989, it was focused on

developing a set of prototype software engineering environments (SEEs) for DoD

use, via contracts with three prime contractors (Boeing, IBM, and Unisys) and their

subcontractor teams. However, there were major mismatches between the

program’s planned products and the needs of its prospective government and

industry users, operators, and maintainers. These shortfalls were in such areas as

tool support, tool integration, tailorability, robustness, compatibility with CASE

tools, portability, and maintenance costs, which were expected to be borne by DoD.

The author assumed responsibility for the STARS program on his arrival as

a Defense Advanced Research Projects Agency (DARPA) office manager in late 1989.

He and the program’s prospective new program manager, Dr. Jack Kramer,

prepared to apply the spiral model to address the program’s risks. They found that

a serious set of risks involved incompatibilities among the expectations of the

program’s stakeholders. They decided to enhance the spiral model with a Theory W

approach to determine whether a win-win solution for STARS was feasible (and if

not, to discontinue the program).

21

As indicated in Section 3, the first two steps in the Win-Win Spiral Model are

to identify the system’s stakeholders and their associated win conditions. Table 4

summarizes the results of these steps for STARS.

 As often happens, the union of the stakeholders’ win conditions in Table 4

produced an overconstrained situation. The STARS prime contractors were

government contracting companies or divisions, and were not prepared to

commercially sell and service the STARS SEEs. But without commercially

supported SEEs, DoD could not afford to operate and maintain them. Thus, for the

program to remain viable, it became necessary for the STARS prime contractors to

find commercial counterparts willing to sell and service the STARS SEEs.

Eventually, each was able to do so: Boeing with DEC, IBM Federal Systems with

IBM Canada, and Unisys Defense Systems with Hewlett-Packard. (IBM Federal

Systems and Unisys Defense Systems are now parts of Loral, Inc.).

 However, although the commercial counterparts were very willing to develop

SEEs which would support software development in the DoD-mandated Ada

programming language, they were not willing to develop all their new SEE software

in Ada, as then required by STARS. Their rationale was that their existing

investments in C software, and their need to support C for commercial SEE

customers, made it a much more cost-effective solution to program in C. Since such

a cost-benefit rationale fit DoD’s Ada waiver criteria, DARPA was able to create a

win-win solution by waiving the Ada programming requirement for the STARS

SEE’s.

 Similarly, a number of other overconstrained situations were resolved into

win-win situations for the stakeholders in Table 4. Some additional resulting

features of the revised STARS program were [Bamberger, 1990]:

• Reorientation around much stronger software process and reuse support,

to achieve software quality and productivity win conditions.

• Inclusion of a set of three demonstration projects, jointly sponsored by

DARPA and a DoD Service (Army, Navy, Air Force), to reduce the risks of

subsequent STARS SEE adoption by major Service programs.

22

• Negotiation of a set of common open STARS SEE interface specifications,

to enable CASE vendors to reach a larger marketplace and reduce tool re-

hosting costs.

• Addition of several STARS affiliates’ programs, to provide CASE vendors,

DoD Service organizations, and other DoD software contractors with access

to intermediate STARS products and a voice in the STARS evolution

strategy.

The STARS equivalent of the LCO milestone involved a set of “Success

Plans” developed by the STARS prime contractors and endorsed by the other major

stakeholders in a STARS/Users Workshop [Bamberger, 1990]. The LCA milestone

involved risk-driven life cycle architecture definitions of the STARS environments

by the STARS primes. These included executing prototypes, and rationales

reflecting their responsiveness to the life cycle objectives, such as the common open

interface specifications. (Responsiveness was not total; for example, commercial

considerations outside DARPA’s control caused Boeing - DEC to adopt the Atherton

tool integration framework rather than the SoftBench framework adopted by IBM

and Unisys-HP.)

The STARS IOC milestone involved each prime contractor delivering its

STARS environment to a DoD Service project for use on a significant-sized

representative application. An Air Force space system used the IBM system; an

Army signal processing system used the Unisys - HP system; and a Navy flight

simulator system used the Boeing - DEC system.

Under the management of John Foreman and Linda Brown, the successor

DARPA STARS program managers, the STARS applications are generally reporting

significant benefits from using the environment, process, and product line/reuse

capabilities. For example, early results from the Air Force Space Command’s

STARS application reported a cost improvement from $140 to $57 per delivered line

of code, and a quality improvement from over 3 to 0.35 errors per 1000 delivered

lines of code.

Table 4. STARS Stakeholder Win Conditions

23

Stakeholder Class Win Conditions

STARS prime contractors and their
commercial counterparts

• Software Engineering Environment
(SEE) sales

• DoD acceptance of commercial SEE
product line

• Productivity leverage on primes’
software business

• Satisfied customers and users

STARS sub-contractors and CASE tool
vendors

• Profits from large tools marketplace
• Reduced tool re-hosting costs
• Open architecture, multi-platform,

polylingual
• Stable evolution, voice in evolution

strategy

Other DoD software contractors • Productivity leverage on software
business

• Open architecture, multi-platform,
ease of extension

• Rapid availability, ease of use,
reasonable cost

• Stable evolution, voice in evolution
strategy

DoD software support organizations • Support of software maintenance
functions

• Similar concerns to DoD software
contractors

• Support of software reengineering, Ada
transition

DoD services and agencies • Accelerator for, compatibility with
Service/Agency software initiatives

• Significant improvement in software
productivity and quality

• Low risks of SEE adoption on critical
projects

ARPA, Congress, taxpayers • All of win conditions above
• SEE life-cycle affordability

Although space limitations preclude detailed discussion of other projects

which have successfully focused their developments on the equivalents of the LCO,

LCA, and IOC milestones, two other examples are worth briefly citing. The TRW-

24

Air Force Command Center Processing and Display System-Replacement (CCPDS-

R) project developed over 500,000 lines of complex distributed software within

budget and schedule, using an LCO-LCA-IOC approach with five increments. The

initial increment, including the executing distributed kernel software, was part of

the LCA milestone, which included demonstration of its ability to meet

requirements growth projections [Royce, 1990]. The Microsoft software

development approach described in [Cusumano-Selby, 1995] is converging toward

an LCO-type milestone with its activity-based planning techniques. It does not

have a strong LCA milestone, but it has a strong IOC milestone preceded by

extensive beta testing, reflecting Microsoft’s increasing appreciation of the risks

involved in shipping software with high defect rates.

5. Conclusions

In order to avoid the problems identified in the introduction to this article

(stakeholder mismatches, gold plating, inflexible point solutions, high-risk

downstream capabilities, uncontrolled developments), software projects need a risk-

driven mix of flexibility and discipline. The three key life cycle milestones described

here (Life Cycle Objectives, Life Cycle Architecture, and Initial Operational

Capability) enable flexible mixes of sequential, cyclic, incremental, and evolutionary

process models, while providing anchor points around which to perform disciplined

planning and control.

The risk-driven content of the three key milestones enables them to be

specifically tailorable to a given software situation, yet general enough to apply to

most software project situations. Their use as life-cycle anchor points has proven

successful on large, complex software projects. And their emphasis on stakeholder

commitment to shared system objectives provides an approach for realizing

software’s most powerful capability: its ability to help people and organizations cope

with change.

6. Acknowledgments

This research is sponsored by the Advanced Research Projects Agency

(ARPA) through Rome Laboratory under contract F30602-94-C-0195 and by the

25

Affiliates of the USC Center for Software Engineering. The current Affiliates are

Aerospace Corporation, Air Force Cost Analysis Agency, AT&T, Bellcore, DISA,

Electronic Data Systems Corporation, E-Systems, Hughes Aircraft Company,

Interactive Development Environments, Institute for Defense Analysis, Jet

Propulsion Laboratory, Litton Data Systems, Lockheed Martin Corporation, Loral

Federal Systems, Motorola Inc., Northrop Grumman Corporation, Rational

Software Corporation, Rockwell International, Science Applications International

Corporation, Software Engineering Institute (CMU), Software Productivity

Consortium, Sun Microsystems, Inc., Texas Instruments, TRW, U.S. Air Force

Rome Laboratory, US. Army Research Laboratory, and Xerox Corporation. I would

also like to thank Jack Kramer, John Foreman, Linda Brown, and the many STARS

participants; Raghu Singh for his standards insights; and the IEEE Software

reviewers for many improvements in this paper.

7.References

[Bamberger, 1990]. J. Bamberger, ed., “STARS/Users Workshop: Final Report -

Issues for Discussion Groups,” CMU/SEI-90-TR-32, Software Engineering Institute,

Pittsburgh, PA, December 1990.

[Boehm, 1988]. B.W. Boehm, “A Spiral Model of Software Development and

Enhancement,” Computer, May 1988, pp. 61-72.

[Boehm, 1989]. B.W. Boehm. “Software Risk Management”, IEEE Computer Society

Press, 1989.

[Boehm - Bose, 1994], B.W. Boehm and P. Bose, “A Collaborative Spiral Software

Process Model Based on Theory W,” Proceedings, ICSP 3, IEEE, Reston, Va. October

1994.

26

[Boehm et al., 1995]. B.W. Boehm, B. K. Clark, E. Horowitz, R. Madachy, R.W.

Selby, and C. Westland, “Cost Models for Future Software Processes: COCOMO

2.0,” Annals of Software Engineering, 1995.

[Boehm - Ross, 1989]. B.W. Boehm and R. Ross, “Theory W Software Project

Management: Principles and Examples,” IEEE Trans. Software Engr., July 1989.

[Carr et al., 1993]. M.J. Carr, S.L. Konda, I. Monarch, F.C. Ulrich, and C.F.

Walker, “ Taxonomy-Based Risk Identification,” CMU/SEI-93-TR-06, Software

Engineering Institute, 1993.

[Carroll, 1995]. J. M. Carroll, Scenario-Based Design, Wiley, 1995.

[Charette, 1989]. R.N. Charette, Software Engineering Risk Analysis and

Management, McGraw Hill, 1989.

[Cusumano-Selby, 1995]. M.A. Cusumano and R.W. Selby, Microsoft Secrets, Free

Press, 1995.

[DoD, 1994]. U.S. Department of Defense, “Military Standard 498: Software

Development and Documentation,” 5 December 1994. Defense Printing Service,

Philadelphia, PA 19111-5094.

[EIA/IEEE, 1995]. EIA/IEEE, “Trial Use Standard J-STD-016, Software Life Cycle

Processes,” December 1995. Available via Global Engineering, 1-800-854-7179.

[Gacek et al., 1995], C. Gacek, A. Abd-Allah, B.K. Clark, and B.W. Boehm, “Focused

Workshop on Software Architectures: Issue Paper,” Proceedings of the ICSE 17

Workshop on Software Architecture, April 1995.

27

[ISO, 1995]. International Standards Organization, “International Standard

ISO/IEC 12207: Information Technology -- Software Life-Cycle Processes,” 1 August

1995. Available via Global Engineering, 1-800-854-7179.

[McCracken-Jackson, 1982]. D.D. McCracken and M.A. Jackson, “Life-Cycle

Concept Considered Harmful,” ACM SW Engr. Notes, April 1982, pp. 29-32.

[Royce, 1990]. W.E. Royce, “TRW’s Ada Process Model for Incremental Development

of Large Software Systems,” Proceedings, ICSE 12, IEEE/ACM, March 1990, pp. 2-

11.

[Royce, 1970]. W.W. Royce, “Managing the Development of Large Software Systems:

Concepts and Techniques,” Proc. Wescon, August 1970. Also available in

Proceedings, ICSE 9, IEEE/ACM, 1987.

[Shaw-Garlan, 1996]. M. Shaw and D. Garlan, Software Architecture; Perspectives

on an Emerging Discipline, Prentice-Hall, 1996.

