Tsung-Hao (John) Su

Ryan Johnson

Team Awesome

SmartFinder

Operational Concepts

SmartFinder is a web based service that provides directions from one location to another, which is similar to an existing service, MapQuest. However our idea is to extend the service to account for various road conditions.
The motivation for this idea is the terrible traffic conditions that our region experiences. When we look up directions from MapQuest, it returns a fairly efficient route from one location to another. However, it does not consider traffic conditions. MapQuest provides driving time estimates without factoring traffic conditions. It is difficult to accurately plan a trip to an unfamiliar location if the estimated time is inaccurate.

Our service will be designed to not only give accurate driving time estimates, it will also provide alternate (perhaps faster) routes, rated by the estimated time for those routes. This also enables clients to use this service to find neat “shortcuts” around heavy volume roads. Another feature is fixed route time estimation. Perhaps you know how to get from one location to another, and you have a specific route which you prefer. You can specify that route and our service will return an estimated driving time.
The service is aimed to help those who don’t know the area or commute a lot. It can also be helpful for people driving at unfamiliar times of the day, and want to know how much traffic affects driving time (such as rush hour). Users familiar to the area may also look up alternate routes. Any business that depends on driving, such as pizza delivery, might be interested in our service.
The service will star off as a web based service. Users will use their favorite browser to go to our website, look up directions and plan trips based on traffic conditions. Design should be able to accommodate expansion, such as covering a larger region of data (maybe even world wide), or multiple types of client interfaces.
System Requirements

Client:

The client will have to be able to access our website using a browser. The user will have to know the address of the starting location, and destination to use a route finder. If the user wants to obtain a driving estimation time on a fixed route, s/he will need to know the directions for our server to process.

Server:

The server side does almost all the work. The server will have to be able to take start locations and destinations and find appropriate routes, factoring local traffic conditions. Different kinds of traffic conditions should be considered, including road closure. When the route finding has been complete, the server should return a website that includes the directions in both text and visual format. The system will be required to service a high volume of users, so it must be designed with expansibility in mind.

The server should be designed using object oriented languages, such as C++ or Java. If performance becomes an issue, a lower level language may be considered.

The main stakeholders in this service are:

1) Users dependent on accurate traffic information

2) Department Of Transportation (DOT) workers who are updating traffic information

3) System administrators who maintain the server side service, and provide upgrades/additions to the system

System and software architecture
The system will have the following components:

1) A web page interface for the client

2) Database for geographical data and traffic conditions

3) A server that is able to interact with the client, access data from the databases, and run the routing algorithms on that data.
The web interface allows the client to input data such as a starting location and destination. The server will run its algorithms, and return to the client a webpage that has the information the client was looking for.

The databases will be provided by a third party. For traffic conditions, we will be using data from the DOT. Maintenance and accuracy of this data will not be under our control. Our algorithms will be using this data, and it will be access by using a simple query language such as SQL.

The server side algorithms will be implemented using the same concept as MapQuest. However we will be extending the algorithm to include road conditions. We prefer using an object oriented language to implement the server side software. Object oriented design allows for modularity and ease of expansion, quicker development. However we might run into performance issues and we might have to port the software to a lower level language.

The algorithms we have in mind are classified as “geocoding” type algorithms, which in short, is the process of assigning latitude and longitude values to an address and interpolating between two nodes to come up with the route. More is available to study online. We will have to modify these algorithms to factor in road conditions, with performance in mind.
Lifecycle plan

Why?
We want to go beyond just finding directions from one location to another.
We want to develop a system that will be useful to commuters such as helping them better plan for and navigate through rough traffic conditions.
What/When?

1) Formulate a “geocoding” algorithm that will be able to return directions giving a start and destination. It will also be able to factor in various road conditions and provide alternate routes.
2) Integrate our geocoding algorithm with DOT data

3) Design the user interface, which is in the form of a web page (BETA)

4) Purchase data licenses for geographical data

5) Perform extensive testing and release to the web (FINAL)

Who/Where?

Clients- Our users are people who want to plan a trip and avoid traffic. The end result should be a happy user that spends the minimal amount of time on the road.
Developers- Our developers need to develop, maintain and expand the systems. This includes adding servers to help distribute the work load, and ensuring the system is online and working most of the time.
Third-party developers – This project requires the cooperation of various people specializing in different fields. We need the DOT to keep the road conditions data to be updated. We also need a third part to supply us with geographical data, and to update that data when needed.
How/How Much?

Developers will develop the server side software in an object oriented language such as C++ or Java. Database access will be queried using SQL. DOT and a geographical data provider will be responsible for their data. These services will cost a considerable amount of money. Developers also must not assume reliability of third-party data. If traffic data goes down, algorithms should still work under “assumed” conditions
Feasibility Rationale
The project depends on data in which we know exists. The DOT already keeps live data on traffic conditions in which you can access on their website. There are vendors that can supply geographical data for us to use. Furthermore, we know that MapQuest is capable of providing directions from one location to another. We will be extending this service by integrating the data from the DOT.

However, the data will be expensive, adding a considerable cost to the project. Also we can’t control the reliability of the data. Another problem is the efficiency of the algorithms. The algorithms developed might work, but may be too computationally expensive. We will have avoid spending time doing research on efficient path finding algorithms, since research is too high of a risk. Finally, we are not sure how much profit can be obtained from this service.

