

Functional Specifications

Operational Concepts

- An Extensible Route-Finding System
 - MapQuest but better, and with plug-ins!
 - Directions based on live traffic data
 - Point-to-point bicycle routes
- User Community
 - Drivers new to a city, or taking new routes
 - All levels of technical fluency
- Opens up routing logic to non-CS people

Traffic Plug-In

- Allows real-time fastest route estimations
- Use real time WSDOT loop data from sensors on all major freeways
- Incident data displayed on map, obtained from MapPoint.
- Expandable to more traffic data input such as video detector on side streets as they become available.

Traffic Sample Uses

- Find fastest route to/from an unfamiliar location (or time)
- Find a better route due to current conditions, i.e. incidents, special events.

Bicycle Routing Plug-In

• Optimal routes considering:

- Hills and overall grade of trip
- One-way streets (preferable)
- Trails for non-motorized vehicles
- Stop-light distance
- Users
 - Commuters to work
 - Weekend trips around Seattle

Use Cases – Bicycle Plug-In

- Lance Legstrong commutes to work every day, but is tired of fighting traffic and getting stuck on hills. He logs onto URoute and finds a easier route to work on his bike along smaller, safer roads, with a shortcut on the Burke Gillman trail.
- Sally lives near University Village and wants to bike to class, but can't stand the hill directly to campus. She logs onto URoute and finds a route with a lesser grade, heading north first and then cruising downhill to class through the main UW entrance.

GUI

- Website accessible to general public
- Simple design and easy to use
- GOAL: to get the user their directions as quickly as possible with minimal reading and/or clicking

Home Page

GUI

- Two Ways to Input Locations
 - Type in Starting and/or Ending address
 - Click on Map to populate address fields
- Route is generated in real time
- Written Directions appear with one click
- User then has the option to go to a customization page to narrow their search

GUI: after "Get Directions"

Plug-In Engine

- Serves as interface between plug-ins and our system
- Plug-ins can both view and submit changes to the data model
 - Example: traffic plug-in submits current traffic data

Technical Specification and System Architecture

Flow Diagram

Core Routing Algorithm

- Using an implementation of A*.
- Heuristic state space search using f(n) = g(n) + h(n) to select the next state.
- Guaranteed to find the shortest path.
- Will run faster than Dijkstra's algorithm.

Plug-In Engine

• Plugin API:

- Plugins can access these primary methods:
 - XmlMapSection GetData(string regionName);bool SubmitUpdate(string regionName,

XmlMapSection newData);

- •bool AddRegion(string regionName, string parentRegion
- Data between plugins and URoute formatted in XML

inode ID="??" location="???" region="???" moreStuff="???"> <edge ID="???" endNode='endNodeID" weight="???" moreWeights="???" type="pluginType"/> /node>

Database Design

Lifecycle Plan

Objectives

- Spiral Development Model
 - Spiral 1 : Define interfaces and connections between major system components
 - Spiral 2 : Implement core with simple bike plug-in
 - Spiral 3 : Implement core with both plug-ins ...and ship!

Rough Schedule

- Week 1 (end Spiral 1): LCA Due Tuesday, present Wednesday. Finish specifications, server setup, database setup, and interface code by Sunday.
- Week 2: Coding of Search Algorithm, Map data import, Traffic data retrieval, basic UI done, bike plug-in.
- Week 3 (end of Spiral 2): Debug to Beta 1 from week 2
- Week 4: Integration of traffic Plug-in (with live data), full UI done with MapPoint
- Week 5: Beta 2 Working as fully as possible
- Week 6 (end of Spiral 3): Debug to Final

Responsibilities

Feature	Task	Owner	Orig Est	Cur Est	Elapsed	Remaining
Bike	Determination of algorithm	Michael	10	10		10
Bike	Integration with user input (preferred	Michael	5	5		5
Bike	Data collection of new routes (Burke	Michael	5	5		5
Core	Interface Define and Code structures	Jonathon, Uday	15	8	0	8
Core	Interface Documentation	Nick	10	10		10
Core	Search algorithm	Nick	6	6		96
Core	Debug	Jonathon, Uday	40	40		40
Core	Integration	Jonathon, Uday	10	10		10
DB	Creation of Database	Karl, Elizabeth, Yegor	- 5	5	1	5
DB	Map Data Import	Karl, Elizabeth, Yegor	15	15		15
DB	Import of Traffic Loop data	Karl, Elizabeth, Yegor	10	10		10
DB	Helper functions to provide easy DB	Karl	5	5		5
DB	Debug	Karl	20	20	C.	20
MapPoint	Click to pick start point for directions	Elizabeth, Nick	4	4	2	2
MapPoint	Draw route on map	Elizabeth, Nick	12	12		12
MapPoint	Debug	Elizabeth, Nick	20	20		20
Traffic	Interpret traffic flow data into reweigh	Yegor, Pedro	2	2		2
Traffic	Integrate algorithm with live data	Yegor, Pedro	10	10		10
Traffic	Debug	Yegor, Pedro	40	40		40
UI	Home Page	Carolyn	5	5		5
UI	Traffic submit incident page	Carolyn	5	5		5
UI	Additional options/refine page	Carolyn	5	5		5
UI	Debug	Carolyn	10	10	2	10
MapPoint	Converting from DB Graph to MapPo	Elizabeth	15	/ 15		15
Core	Documentation and Specs	Michael	15	/ 15		/15
Core	Build engine (setting up nightly build	Uday	10	10		10
Buffer	Slippage time	All	20	0		0

Resources and Support

Operations

- Database Server
- Webserver IIS
- Operations Staff post-launch
- Dependencies
 - GIS Data
 - Washington DOT data
 - MapPoint

Feasibility

Pros:

- Schedule of man hours is reasonable
- Existing demand for driving directions
- Extensibility increases chances of success

Challenges:

- Integration of different data sources
- Public acceptance and our ability to attract developers
- Actually finding a better route (around traffic, for bikes, etc.)

Future Extensions

Display on mobile devices

- Integration with in-car GPS systems
- Expansion beyond greater Seattle area
- Route-finding for hikers in national parks
 - Plus route tracking via GPS to add to graph of park area