
CoffeeShop
Overview

Lifecycle Architecture

Features: What can you do with it?

� Read RSS feeds via our web portal

� Search and subscribe to feeds, then use tags to organize them.

� Express your opinions by commenting on articles for the world to see.

� Become somebody’s fan – subscribe to the articles they find interesting.

� Find and view users with similar interests

� Rate the articles you’ve read

� Track article/feed popularity

Design: What will it look like?

Architecture: How?

� 3 Main Interfaces
� Database
� RSS
� Search (DB)

� Classes/Objects
� User
� Feed
� Article
� Comment

Architecture

� Users
� Objects containing pertinent user info, such as login, email, idols,

subscriptions
� Feeds

� Objects containing feed data, such as articles, URL, ratings, tags
� Articles

� Similar to feed, contains source URL, associated feed,
comments

� Comments
� Object containing comments about articles. Contain an

associated username, article, and feed.

Architecture

� Database Interface
� Main interface that communicates with the webserver
� Contains methods for adding/updating object info

(login info, feeds, idols, etc.)
� Communicates with RSS Bandit/Lucene for

fetching/parsing feeds and searching for items in the
database

� Indexed DB for quick results

Architecture

� RSS Interface
� Interface which facilitates fetching/parsing

feeds
�Web Server will query the DB for a feed

� If present, DB will return it
� If not, will use RSS Bandit to fetch the feed from

the provided URL
�DB will return results to the webserver

Architecture

� Search Interface
�Uses the “Lucene” tool, which will allow for an

indexed search of the database.
�Will take a request from the webserver and

use Lucene to fetch the data, returning it to
the webserver
� If a feed is not present, this is where the DB will

make use of RSS bandit to get the feed, then
return the search results

Architecture
� Class Properties

� User
� Subscriptions
� Name
� Email
� Username
� Idols
� Fans

� Feed
� Tags
� GlobalTags
� Articles
� Name
� Description
� URL

Architecture
� Class Properties (cont.)

� Article
� Read Read by user
� Rating Rating given by user
� Feed Associated Feed
� Tags Unique user-given tags
� Comments Comments about article
� Description Desription of article
� Title Title of article
� Date Date written (filled in by RSS channel)
� Copyright Copyright information for use by the channel
� PubDate Date published

� Comments
� Article Article belonging to
� Comments The comments in response to comment
� Text The text of the comments
� User User associated with the comments

Architecture

� High Risk/Problem Areas
� Lucene/RSS Bandit Interfaces

� Not defined by us, prewritten code
� Design depends on functionality of modules and ability to

adapt

� Database Design
� Too complex of design can result in too much wasted time

trying to integrate all the tables and data
� Simplistic design which will not encompass all related data

will help save time while still providing basic functionality

Schedule and Task Assignments:
Who and when?
� Milestones
� Tasks
� Schedule

Milestones

� February 16 – Beta 1 Release

� Create a working RSS reader. Should be able to:
� Create a new account
� Log in
� Edit their user profile
� Add a feed
� Remove a feed
� Read unread articles
� Search for feeds
� Tag feeds
� Tag articles

Milestones

� March 1 – Beta 2 Release

� Finish community features. Users should be able to:
� Comment on articles
� Rate articles
� Search for users
� Add idols
� View fans
� View idols’ interesting articles

Milestones
� March 7 – Final Release

� Bug fixes. Users should be able to:
� Click on anything without breaking it
� No unexpected behavior
� See friendly error messages

� Maybe Version 2 features. Users might be able to:
� View suggested articles
� View an article’s popularity
� View a feed’s popularity
� Be introduced to users with similar interests
� Be notified of new articles containing a particular keyword
� View a graph of a particular keyword’s frequency in articles over time.

Schedule

� Wednesday, February 1
�Administrative tasks completed.

� Garrett will finish these administrative tasks.
�LCA completed.

� The team will work together on this.

Schedule

� Monday, February 6
�Training completed.

� Every member of the team should go through the
training necessary to be fluent in ASP.NET and our
development environment.

Schedule

� Friday, February 10
�Skeleton code and unit tests for Beta 1

features completed.
� The classes listed in the CoffeeShop Architecture

document should be created and added to source
control with method and property stubs, comment,
and unit tests.

Schedule

� Thursday, February 16
�Beta 1 Release completed.

� Each member of the team will be assigned a
component/module of the architecture and will be
responsible for implementing its features.

Schedule

� Monday, February 20
�Skeleton code and unit tests for Beta 2

features completed.
�Testing and usability studies.

� Identify the bugs and usability flaws found in the
first round of testing on the Beta 1 build.

Schedule

� Thursday, March 2
�Beta 2 Release completed.

� Bugs from the Beta 1 testing cycle should all be
fixed. All features from the Beta 2 specification
should be completed.

Schedule

� Friday, March 3
�Testing and usability studies.

� Identify bugs and usability flaws found in the
second round of testing right away so that we can
begin bug fixing over the weekend.

Schedule

� Tuesday, March 7
�Final Release completed.

� All bugs fixed (yeah right!).

Feasibility Rationale: why it will
work
� RSS readers are a proven entity: the

fundamentals of our project exist in one form or
another, however not in the unified manner that
we are proposing.

� The components of this system are designed for
high modularity making for easy replacement of
parts and future add-ons.

� Version 1.0 components have been narrowed
down to include only those that will result in a
highly robust system.

Feasibility Rationale: why people
want it
� Our system will provide a highly intuitive user interface.

Included in this is a highly polished feature set that will
allow the user to maximize the information gained.

� RSS is already highly popular and its user base
continues to expand.

� Benefits over other readers:
� Easier to find interesting and relevant articles:

� Article/feed suggestions
� Tagging
� “Interesting” articles distributed to fans

� Leverages community participation
� See what others have to say (comments)
� Organize articles by popularity (community buzz).

