CoffeeShop Architecture

The backend architecture will be composed of four objects to model our system. These objects will use the DBInterface to communicate between the database and the web server. The DBInterface provides a simple interface to the database so that other classes will not have to deal with the logic in querying the database and creating objects to operate on. In addition to implementing the logic to query and create objects from the queries, the interface will provide methods to modify and add to the database. The RssInterface will provide an interface for our objects and web server to obtain new RSS feed articles we will use the class RSS.NET and RSS Bandit to help us fetch and parse RSS feeds. Lastly, the SearchInterface will access an index to allow users to search for relevant articles, feeds, and other users. The searching will be done by the Lucene search module. The methods and properties of the classes and interfaces are defined below.

[image: image1.png]
Interfaces
DBInterface

The DBInterface will have four sections of methods involving the four main classes our architecture uses. The first section will perform SQL queries to instantiate objects for the web server to use. The other sections will add, update, and delete the objects from the database.
The four main classes are:

User Object – Data pertaining to the user, such as email, login, and subscription info.

Feed Object – Data pertaining to the feed, such as arcticles, URL, ratings, tags, etc.

Article Object – Data pertaining to the article, such as URL, rating, tags, associated feed, etc.

Comment Object – Data pertaining to an article comment, such as user, comment, and text.

The methods are:
getUser

getFeed

getArticle

getComment

addUser

addFeed

addArticle

addComment

updateUser

updateFeed

updateArticle

updateComment

deleteUser

deleteFeed

deleteArticle

deleteComment

RssInterface

The RssInterface is responsible for grabbing the XML documents from RSS feed URL’s and

parsing the document into Article objects.

Methods
fetchFeed – retrives a list of Article objects from an RSS feed. It will be up to the caller to determine if the Articles have been read/stored in the database already

parseFeed – parses the feed into the appropriate parts and sends them to the database.
SearchInterface

The SearchInterface is responsible for accessing an index to search for relevant articles, feeds, and other users.

Methods

searchForUser
searchForArticle

searchForFeed
updateUser- add/update new user information
updateArticle- add/update new articles from feeds
updateFeed – add/update feed information
Interacts with the ‘Lucene’ tool, which will facilitate the searching of the database for article keywords, users, or feed information.
The search interface will return User queries for objects in the database pertaining to Idols. It will also search and return queries to the DB for Article information.

Follows the general path (top(bottom):

· Web server provides query

· Search interface wraps the query into usable syntax

· New command passed to Lucene

· Lucene returns search results from indexed database
· DB data returned to the web server

· Web server displays to client
Database Schema
Tables and attributes:

User:

· Primary key: user name

· Attributes: E-mail, profile, password

UserFeeds:

· References: User, Feed

Feed:

· Primary key: URL
· Attributes: description

Idols:
· References: User (the idol), User(the fan)

Article:

· Primary key: title, date

· Attributes: rating, read, description, url, imageurl

· References: Feed (each article belongs to a feed), comment
UserArticle:

· References: User (the owner of this article), Article

GlobalArticleTag:

· Attributes: type

· References: Article

UserArticleTag:

· Attributes: type

· References: Article, User

UserFeedTag:

· Attribute: type

· References: Feed, User

GlobalFeedTag:

· Attribute: type

· References: Feed

Comment:
· Attributes: text

· References: User, Article
CommentTree:
· References: Comment (the root of the tree), Comment (the nodes of the tree)

The relationship between the tables are show in the diagram below:

[image: image2.jpg]
Classes
The following pages define the object interfaces.

The User class models a single client using the website.
User

Methods: None

Properties:

Subscriptions- The user will contain a list of Feed objects which represent the RSS feeds the user is subscribed to.

Name – The user’s real name

Email – Email address

Username – User’s login name, which will be displayed instead of the user’s real name on comments and other community features.

Idols – A list of other users that this user is a fan of.

Fans – A list of other users in which this user is an idol of.
The Feed class models a single RSS feed. The Feed class is defined as:
Feed

Methods: None
Properties:
Tags – A list of tags that classify the type of a particular RSS feed, unique to the user associated with this feed.

GlobalTags – A list of global tags that classify the type of a particular RSS feed.
Articles – A list of articles a particular feed contains.

Name – The name for the particular feed

Description – the description information parsed from the RSS feed

URL – the source location for the feed
The article class models a single entry in an RSS feed.
Article
Methods:
RecommendTo(User) – This method is called by the web server when an article is recommended to another user.

Properties:
Read – This property indicates if the article has been read by the user.

Rating – Users will give the article a rating, which will be updated for all other users to see when the article is retrieved.

Feed – The feed this particular article belongs to.

Tags – A list of Tags a unique user has given to this article.

GlobalTags – A list of tags all users have given to this article.

Comments – A single comment object that represents the root of a comment “tree”.

Description – The description of the article. This is filled in by the RSS parser.

Title – The title of the article. Filled in by RSS parser.

Url – URL filled in by the RSS parser
Date – DateTime filled in by the RSS parser

ImageUrl – Optional link to an image this article contains.

Note: There are other RSS types that this object may store in addition to the fields described above such as:
Copyright- copyright notice for content in the channel

PubDate- The publication date for the content in the channel. All date-times in RSS conform to the Date and Time Specification of RFC 822, with the exception that the year may be expressed with two characters or four characters (four preferred).

LastBuildDate- The last time the content in the channel changed.

Category- Specify one or more categories that the channel belongs to.

Docs- A URL that points to the documentation for the format used in the RSS file.

Rating- The PICS (Platform for Internet Content Selection; http://www.w3.org/PICS/) rating for the channel.
The comments class represents a comment given by a user in response to reading an article. A comment object contains a list of other comment objects. This allows comments to be linked together to form a tree. The motivation for doing so is to allow multiple replies to a particular comment, and multiple replies to those comments.
Comments

Methods:
Reply – This method is called to reply to a comment. It creates a comment object and adds it to the list of replies to this comment.
Properties:
Article – The article this comment was generated from.

Comments – The list of comments in response to this comment.
Text – The actual text of the comment.

User – The user that posted the comment.

The four objects interact in the following hierarchical fashion:

User

/\

 / \

Feed---Article

 \

 \

Comment
High-Risk/Problem Areas
This section defines areas of potential risk and how we can prevent them from halting the design.

There are not any high-risk areas in the design at this point, but two potential areas to watch are:
1) The interfacing between the DB and Lucene (Search program)

2) The interfacing between the DB and RSS Bandit (Parsing of RSS feeds)

3) Database design may end up taking too much time

The only reason these may become potential problems is because these are not modules that were designed by us, so the functionality is not loosely defined. The design specifications may need to be adapted to encompass the full functionality of each module.

To prevent these from halting the design in such an event, we can implement the design ourselves, and/or disable searching.

As for the database design, any attempts to make the interactions too complex will require more time to complete than is allowed already.

User Level Architecture
The user interacts with the webserver through a webpage, which is detailed in the project specification.
