Test Plan: TeamForge

Andrew Nelson, Bishop Wilkins, Ky Le, and Yoshito Kosai

7/13/06

This document outlines the testing methodology our team intends to use to test our product TeamForge, along with a set of preliminary ideas for test cases covering the most important aspects of the product. These initial test cases are intended to be later expanded to satisfy our customers that all areas of the product they are concerned about have been checked out.

Testing Methodology

At the highest level, our testing philosophy embraces two widely-used and effective software development patterns we will here call “Daily Smoke Tests with Build” and “Code Unit Tests Before Coding Components Under Test”.
Daily Smoke Tests with Build

Once our development environment is up and running, we intend to do a full build of TeamForge at least every night, starting with the zero-feature integration build, and continuing all the way until the final release. The steps to be taken to assemble all our changes in our SourceForge repository and conduct the build are still to be decided. However, one of the final steps will be to run the full suite of smoke tests that we will be developing along with the components, to make sure nothing is broken in the day’s build.

Since we intend to design tests for each new feature being added before that feature is added, as the number of working TeamForge components grows the test suite will also grow very large. We anticipate that it will become difficult to manually run the full set of tests after each build, and so we will automate the tests as much as possible with a testing tool like Compuware TestPartner.
Code Unit Tests Before Coding Components Under Test
We anticipate that much of our system will be testable through code, since there is not much graphical output or other output that would require human input to determine whether or not it is correct. Therefore it will be possible to code tests for new classes and methods that we write before writing the classes and methods themselves. These unit tests will probably form the bulk of the daily smoke test suite described above.
Since TeamForge will be primarily built on Ruby on Rails we will be using the unit testing infrastructure already provided with Ruby. This means that we just have to call a file called rake and it will run all of the unit tests that we create in the test directory of our project.
Preliminary Test Cases
Here is a minimal set of test cases comprised of tests for the features described in our TeamForge specification and architecture documents that will be developed first. It is expected that this set of test cases will grow substantially as TeamForge is developed. The cases are organized into three categories: Installation, Login/Registration, and Project List/Creation. The cases include structural, functional, data, platform, and operational tests. Later categories to be added include File Browser Pane, Plug-in API, Repository Input/Output, and Example Text Editor Plug-In.

Installation Tests
Server was Installed Successfully

Precondition: User follows installation steps (to be completed) to install a server.
Test: Check file and directory structure on server.

Expected Postcondition: File and directory structure and settings match expected structure and settings.
Client Can Access Server

Precondition: User follows installation steps (to be completed) to install a server.
Test: Client navigates to TeamForge homepage via browser.
Expected Postcondition: TeamForge homepage appears.
Login/Registration Tests
Sign In Without Registration Leads to Registration Page
Precondition: A new user has navigated successfully to the TeamForge homepage.
Test: User signs in from homepoage under an unknown name.
Expected Postcondition: The user sees the TeamForge New User Registration page.
Incorrect Registration Submission Leads to Registration Page with Error Explanation

Precondition: A new user has navigated to the TeamForge New User Registration page.
Test: User enters invalid information (e.g. an email address with no @ symbol) and submits.
Expected Postcondition: The user sees the Registration page with an error message at the top explaining what was insatisfactory about the filled out form.
Correct Registration Submission Creates New User in Database

Precondition: A new user has navigated to the TeamForge New User Registration page.
Test: User enters valid information and submits.
Expected Postcondition: New user information appears in correct tables in the database.
Correct Registration Submission

Precondition: A new user has navigated to the TeamForge New User Registration page.
Test: User enters valid information and submits.
Expected Postcondition: User sees a new, empty Project List Page.
Sign In With Registration Leads to Project List Page
Precondition: A registered user has navigated successfully to the TeamForge homepage.
Test: User signs in from homepoage.
Expected Postcondition: User sees their Project List Page.
Project List/Creation Tests
Projects List Page Displays “No Projects” Message For Users with No Projects

Precondition: A user with no projects specified has navigated to the Project List Page.
Test: User looks at the page.
Expected Postcondition: The page displays “No projects specified yet.”
Projects List Page Displays All Projects for a User with Projects

Precondition: A user with one or more projects specified has navigated to the Project List Page.
Test: Uesr looks at the page.
Expected Postcondition: All projects the user has started or joined appear on the page.
Clicking a Project Leads to Main Interface with that Project

Precondition: A user with one or more projects specified has navigated to the Project List Page.
Test: User clicks on a project.
Expected Postcondition: The main interface appears, with the file browser for the clicked project on the left.
Clicking New Project Leads to the New Project Page

Precondition: A user has navigated to the Project List Page.
Test: User clicks the “New Project” button.
Expected Postcondition: The New Project Creation Page appears.
Correct New Project Page Submission Leads to Main Interface with New Project

Precondition: A user has navigated to the New Project Creation Page.
Test: User correctly fills out the form fields and submits.
Expected Postcondition: The main interface appears, with the file browser for the newly created project on the left.
Incorrect New Project Page Submission Leads to New Project Page with Error

Precondition: A user has navigated to the New Project Creation Page.
Test: User correctly fills out the form fields and submits (e.g. by specifying a project name that already exists).
Expected Postcondition: The user sees the New Project Page with an error message at the top explaining what was insatisfactory about the filled out form.

